DOI: https://doi.org/10.29363/nanoge.interect.2021.015
Publication date: 10th November 2021
Computational models of electrocatalytic reactions based on the computational hydrogen electrode [1] have greatly contributed to the discovery and enhancement of catalysts for numerous reactions [2]. Because of its intrinsic complexity, the CO2 reduction reaction (CO2RR) is, so far, a remarkable exception to the rule [3]. The interplay of several factors such as electrode morphology, local and bulk pH, electrolyte effects, mass transport, etc. make it difficult for CO2RR computational models to be simultaneously predictive yet affordable [4, 5].
Although the shortcomings are usually ascribed to the disregard of kinetics in CHE-based models, in this talk I will mention two thermodynamic factors that also jeopardize their accuracy: (I) the lack or insufficient incorporation of water-adsorbate interactions for the CO2RR intermediates, and (II) the presence of systematic errors in the gas-phase molecules calculated with DFT. I will show that relatively inexpensive solutions to these two problems exist that lead to better quantitative agreement with experiments [6, 7].
Time permitting, I will show that gas-phase errors are also significant for several other reactions but can be swiftly corrected [8].
References
[1] J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. R. K. J. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108 (2004) 17886-17892.
[2] Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 355 (2017) eaad4998.
[3] Z. P. Jovanov, H. A. Hansen, A. S. Varela, P. Malacrida, A. A. Peterson, J. K. Nørskov, I. E. L. Stephens, I. Chorkendorff, J. Catal. 343 (2016), 215-231.
[4] S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K Nørskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev 119 (2019) 7610-7672.
[5] Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy 4 (2019) 732-745.
[6] L. P. Granda-Marulanda, A. Rendón-Calle, S. Builes, F. Illas, M. T. M. Koper, F. Calle-Vallejo, ACS Catal. 10 (2020) 6900-6907.
[7] A. Rendón-Calle, S. Builes, F. Calle-Vallejo, Appl. Catal., B 276 (2020) 119147.
[8] R. Urrego-Ortiz, S. Builes, F. Calle-Vallejo, ChemCatChem 13 (2021) 2508-2516.