The synthesis of molecular fuels and chemical feedstocks from renewable energy sources has enormous potential as a scalable approach for reducing our dependence on fossil fuel resources. Electrification of the chemical processes holds the promise to be one of the solutions. This symposium invites contributions on the latest progress in the field of electrocatalysis, reporting state of the art catalyst, techniques and advances in our understanding of their function and how concepts are used to design new catalysts. The sessions will span from molecular catalysts to materials, including biohybrid systems and systems-level challenges required to develop viable technologies. Water oxidation, water reduction, CO2 reduction and dinitrogen reduction will be covered together with the transformation of small organic molecules.
- Fundamental strategies to design new electrocatalysis
- Mechanistic understanding
- In situ and Operando analyses
- Molecular, inorganic, reticular and hybrid catalytic systems
Prof. Julio Lloret-Fillol graduated in Chemistry from the Universidad de Valencia in 2001 where he also obtained his PhD in 2006, working under the supervision of Prof. P. Lahuerta and Prof. J. Pérez-Prieto. After his PhD he moved to the University of Heidelberg to the group of Prof. L. H. Gade as a postdoctoral MEyC fellow and postdoctoral Marie Curie fellow. Since 2010 he has been working as an independent research leader at Universitat de Girona (Ramón y Cajal program). In 2014 he obtained a position as Young Research Group Leader at the Institut de Química Computational i Catàlisi (UdG). In November 2014 he move to the Institute of Chemical Research of Catalonia (ICIQ) as a junior group leader and in 2020 promoted to his actual position of Senior group leader.
James Durrant is Professor of Photochemistry in the Department of Chemistry, Imperial College London and Ser Cymru Solar Professor, University of Swansea. His research addresses the photochemistry of new materials for solar energy conversion targeting both solar cells (photovoltaics) and solar to fuel (i.e.: artificial photosynthesis. It is based around employing transient optical and optoelectronic techniques to address materials function, and thereby elucidate design principles which enable technological development. His group is currently addressing the development and functional characterisation of organic and perovskite solar cells and photoelectrodes for solar fuel generation. More widely, he leads Imperial's Centre for Processable Electronics, founded the UK�s Solar Fuels Network and led the Welsh government funded S�r Cymru Solar initiative. He has published over 500 research papers and 5 patents, and was recently elected a Fellow of the Royal Society
Vincent Artero was born in 1973. He is a graduate of the Ecole Normale Supérieure (Ulm; D/S 93) and of the University Pierre et Marie Curie (Paris 6). He received the Ph.D. degree in 2000 under the supervision of Prof. A. Proust. His doctoral work dealt with organometallic derivatives of polyoxometalates. After a postdoctoral stay at the University of Aachen (Aix la Chapelle) with Prof. U. Kölle, he joined in 2001 the group of Prof. M. Fontecave in Grenoble with a junior scientist position in the Life Science Division of CEA. Since 2016, he is Research Director at CEA and leads the SolHyCat group. His current research interests are in bio-inspired chemistry including catalysis related to hydrogen energy and artificial photosynthesis.
Vincent Artero received the "Grand Prix Mergier-Bourdeix de l'Académie des Sciences" in 2011 and has been granted with a Consolidator Grant from the European Research Council (ERC, photocatH2ode project 2012-2017). He's a member of the Young academy of Europe (YAE). He currently acts as Chair of the Scientific Advisory Board of the ARCANE Excellence Laboratory Network (LABEX) for bio-driven chemistry in Grenoble and as co-head of the French network (CNRS-Groupement de recherche) on Solar Fuels. Since 2016, Vincent Artero is associate editor of the Royal Society of Chemistry journal "Sustainable Energy and Fuels". From January 2018 onward, he actsas associate editor of the Royal Society of Chemistry flagship journal "Chemical Science"
Boettcher is a Professor in the Department of Chemistry and Biochemistry at the University of Oregon. His research is at the intersection of materials science and electrochemistry, with a focus on fundamental aspects of energy conversion and storage. He has been named a DuPont Young Professor, a Cottrell Scholar, a Sloan Fellow, and a Camille-Dreyfus Teacher-Scholar. He was included as an ISI highly cited researcher (top 0.1% over past decade) over the past two years. In 2019, he founded the Oregon Center for Electrochemistry and in 2020 launched the nation’s first targeted graduate program in electrochemical technology.
Marc T.M. Koper is Professor of Surface Chemistry and Catalysis at Leiden University, The Netherlands. He received his PhD degree (1994) from Utrecht University (The Netherlands) in the field of electrochemistry. He was an EU Marie Curie postdoctoral fellow at the University of Ulm (Germany) and a Fellow of Royal Netherlands Academy of Arts and Sciences (KNAW) at Eindhoven University of Technology, before moving to Leiden University in 2005. His main research interests are in fundamental aspects of electrocatalysis, proton-coupled electron transfer, theoretical electrochemistry, and electrochemical surface science.
Prof. Magalí Lingenfelder is a PI with an excellent track record and a passion for atomically controlled interfaces. Her work contributes to the design of new materials by elucidating chemical processes by Scanning Probe Microscopies and Surface Sensitive Spectroscopies, including dynamic (bio) molecular recognition processes at the liquid/solid interface.
She created and led for over 10 years the Max Planck-EPFL laboratory for Molecular Nanoscience at EPFL campus in Switzerland, and is currently leading the Helvetia Institute for Science and Innovation.
She studied physical and biological chemistry at the National University of Córdoba in Argentina. In 2003, she finished her MSc thesis at the Max Planck Institute for the Solid State Research (MPI-FKF in Stuttgart, Germany) with seminal contributions to the field of metal-organic coordination networks on solid surfaces. She continued with her doctoral studies in Physics, and received the Otto Hahn medal of the Max Planck Society in 2008 for the microscopic understanding of the chiral recognition process with submolecular resolution. In her quest to study molecular recognition going from 2D to 3D complex systems, she made postdoctoral stays at the Institute of Materials Sciences in Barcelona, and at the Molecular Foundry of the Lawrence Berkeley National Lab in the US.
She is a committed mentor who directed 4 MSc theses, 5 PhD theses, and 5 postdocs. She advocates for problem-oriented interdisciplinary research, by pioneering the emerging field of BioNanoarchitectonics. She led 5 international research consortiums, delivered over 50 invited presentations, and organized 9 conferences and 4 doctoral schools. She and her team had received multiple awards and international recognitions for their creative and rigurous work on molecular recognition, chirality and operando studies at catalytic interfaces. In 2018, the Royal Society of Chemistry included her work in the first collection “Celebrating Excellence in Research: 100 Women of Chemistry”.
Professor Erwin Reisner received his education and professional training at the University of Vienna (PhD in 2005), the Massachusetts Institute of Technology (postdoc from 2005-2007) and the University of Oxford (postdoc from 2008-2009). He joined the University of Cambridge as a University Lecturer in the Department of Chemistry in 2010, became a Fellow of St. John’s College in 2011, was appointed to Reader in 2015 and to his current position of Professor of Energy and Sustainability in 2017. He started his independent research programme on artificial photosynthesis (solar fuels) with the support of an EPSRC Career Acceleration Fellowship (2009-2015), which also received substantial early support by the Christian Doppler Laboratory for Sustainable SynGas Chemistry (2012-2019). In 2016, he received a European Research Council (ERC) Consolidator Grant to develop the field of semi-artificial photosynthesis (biohybrid systems for solar fuel synthesis) and has recently been awarded an ERC Advanced Grant (now funded by the UKRI underwrite scheme) on semi-biological domino catalysis for solar chemical production. He is the academic lead (PI) of the Cambridge Circular Plastics Centre (CirPlas; since 2019), where his team develops solar-powered valorisation technologies for the conversion of solid waste streams (biomass and plastics) to fuels and chemicals. He has acted as the academic lead of the UK Solar Fuels Network, which coordinates the national activities in artificial photosynthesis (2017-2021) and is currently a co-director of the Centre for Doctoral Training in Integrated Functional Nano (nanoCDT) in Cambridge as well as a member of the European research consortia ‘Sofia’ and ‘solar2chem'.
Marc Robert was educated at the Ecole Normale Supérieure (Cachan, France) and gained his Ph.D. in 1995 from Paris Diderot University under the guidance of Claude Andrieux and Jean-Michel Savéant. After one year as a postdoctoral fellow at Ohio State University (USA), working alongside Matt Platz, he joined the faculty at Paris Diderot University as Associate Professor. He was promoted to full Professor in 2004, and distinguished Professor in 2019 at Université de Paris. He became a junior Fellow of the University Institute of France (IUF) in 2007 and a senior Fellow in 2017. He was a JSPS (Japan Society for the Promotion of Science) research Fellow (2015). Among various distinctions, Marc Robert received the first International Prize Essential Molecules Challenge from Air Liquide (2016) and the Chemistry and Energy Research Prize from the French Chemical Society (2019). His interests include electrochemical, photochemical, and theoretical approaches of electron transfer reactions and reactivity in chemistry, as well as catalytic activation of small molecules, mainly CO2 and N2.
Prof. Beatriz Roldán Cuenya is currently Director of the Interface Science Department at the Fritz Haber Institute of the Max Planck Society in Berlin (Germany). She is an Honorary Professor at the Technische Universität Berlin, at the Freie Universität Berlin, and at the Ruhr-University Bochum, all in Germany. Also, she serves as a Distinguished Research Professor at the University of Central Florida (USA).
Prof. Roldán Cuenya began her academic career by completing her M.S./B.S. in Physics with a minor in Materials Science at the University of Oviedo, Spain in 1998. Afterwards she moved to Germany and obtained her Ph.D. from the Department of Physics of the University of Duisburg-Essen with summa cum laude in 2001. Subsequently, she carried out her postdoctoral research in the Department of Chemical Engineering at the University of California Santa Barbara (USA) until 2003.
In 2004, she joined the Department of Physics at the University of Central Florida (UCF) as Assistant Professor where she moved through the ranks to become a full professor in 2012. In 2013 Prof. Roldan Cuenya, moved to Germany to become Chair Professor of Solid State Physics in the Department of Physics at Ruhr-University Bochum until 2017.
During her academic career, Prof. Roldan Cuenya received an Early CAREER Award from the US National Science Foundation (2005) and the international Peter Mark Memorial award from the American Vacuum Society (2009). In 2016 she became Fellow of the Max Planck Society in Germany and also received the prestigious Consolidator Award from the European Research Council. In 2020, she became a member of the Academia Europaea (Academy of Europe). She received the AVS Fellow Award (2021), the International Society of Electrochemistry-Elsevier Prize for Experimental Electrochemistry (2021), the 2022 Paul H. Emmet Award of the North American Catalysis Society, and the Röntgen Medal of the City of Remscheid (2022).
Prof. Dr. Beatriz Roldan Cuenya is the author of 245 peer-reviewed publications, 6 book chapters and 6 patents. She has been supervising 74 postdoctoral fellows and 36 PhD students. She has given 245 invited talks, with 13 plenary talks and 33 keynote lectures since 2017. Her H-factor is 74 (Google Scholar) and her work has received over 21,500 citations.
She presently serves on the editorial advisory boards of the Journal of Catalysis and Chemical Reviews. In addition, she also contributes to a number of advisory committees, including the Liquid Sunlight Alliance (USA), the Advanced Research Center Chemical Building Blocks Consortium (Utrecht, the Netherlands), the Spanish Synchrotron Facility ALBA (Barcelona, Spain), the German Synchrotron DESY (Hamburg, Germany), the Helmholtz-Zentrum Berlin for the strategic development of BESSY II (Berlin, Germany), the Institute of Chemical Research of Catalonia (ICIQ in Tarragona, Spain), the UK Catalysis Hub and the Ertl Center for Electrochemistry & Catalysis (South Korea).
Prof. Roldan Cuenya’s research program explores physical and chemical properties of nanostructures, with emphasis on advancements in nanocatalysis based on operando microscopic and spectroscopic characterization.
The Sustainable Development Goals of the United Nations, the new strategic directions of the energy Earthshots proposed by President Biden, and the European Green Deal are all aligned. We are tasked to push a consistent green energy revolution in the next decade to achieve a cost-effective (solar) fuel and chemical synthesis. How do we get there? Decades of progress in the area have laid the foundation for the next significant leap in the field. The use of artificial intelligence and machine learning approaches for the synthesis of optimized catalytic materials, the development of complex in situ and operando correlative spectroscopic and imaging characterization combined with data science, the advanvements in theoretical methods and models will be the major player in improving cost, efficience, and durability of existing systems. In this symposium, we will bring together the most advanced synthetic, characterization and theory approaches for the energy revolution of the next decade. The main focus will be directed towards hydrogen production, CO2 reduction, nitrogen fixation, and organic electrosynthesis.
- In situ and operando characterization of (photo)electrocatalysts and photocatalysts
- X-ray characterization of light absorbers, electrocatalysts, and photoelectrocatalysts for fuel and chemical production
- Imaging characterization of electrocatalysts and photoelectrocatalysts
- Multimodal and correlative characterization approaches
- Chemical transformations and degradation of (photo)electrocatalysts, light absorbers and membranes for solar fuel production
- Theory of electro and photoelectrocatalytic materials especially connected to in situ and operando characterization
- Data science and machine learning approaches to discovery of novel light absorbers, electrocatalysts, and photoelectrocatalysts for fuel and chemical production
David Prendergast is a Senior Staff Scientist and Facility Director for Theory of Nanostructured Materials at the Molecular Foundry, a Department of Energy Nanoscale Science Research Center, at Lawrence Berkeley National Laboratory. He received his Ph.D. in physics from University College Cork in Ireland in 2002 and joined the Foundry as a staff scientist in 2007. In his time at the Foundry, he has developed a remarkably broad multidisciplinary research program, involving X-ray science at the Advanced Light Source, and spanning chemical and materials sciences. David's research combines first-principles electronic structure theory and molecular dynamics simulations to study energy-relevant processes in complex materials systems at the nanoscale, especially at interfaces, often through direct simulation and interpretation of X-ray spectroscopy experiments.
Marco Favaro is the deputy head of the Institute for Solar Fuels at the Helmholtz Zentrum Berlin (HZB), Germany. After his PhD at the University of Padua (Italy) and Technical University of Munich (Germany), concluded in 2014, he spent two years as a Post-doctoral fellow at the Joint Center for Artificial Photosynthesis in Berkeley, USA, in the group of Dr. Junko Yano. He moved to Germany in 2017 to join the HZB. Here, his research activity focuses on understanding chemical composition/electronic-structural properties/performance interplay in photoelectrocatalysts by coupling operando multimodal spectroelectrochemical investigations with synchrotron-based in situ/operando spectroscopies.
Dr. Christopher Kley leads the Helmholtz Young Investigator group "Nanoscale Operando CO2 Photo-Electrocatalysis" at the Helmholtz Center Berlin for Materials and Energy and the Fritz Haber Institute of the Max Planck Society. Previously, he was working at the Department of Chemistry at the University of California, Berkeley (Postdoc), Max Planck Institute for Solid State Research and École Polytechnique Fédérale de Lausanne (PhD), Max Planck Institute for Chemical Energy Conversion (master), and Karlsruhe Institute of Technology (study of physics). His research group focuses on deciphering the structural, electrical and catalytic properties of materials under liquid phase reaction conditions by in situ scanning probe microscopy based approaches paired with electrochemical and spectroscopic characterization as well as material synthesis.
Dr. Tyler Mefford is a Senior Staff Research Scientist in the Department of Materials Science & Engineering at Stanford University. He has a B.S. in Chemistry from Stanford University (2012), a Ph.D. in Analytical Chemistry from the University of Texas at Austin (2016), and did postdoctoral research in the Department of Materials Science and Engineering at Stanford University (2016-2020). His research is focused on developing advanced electrocatalysts for green chemical production through atomically-controlled synthesis, operando electrochemical scanning probe, X-ray, and electron microscopies, and first principles/microkinetic modeling approaches.
Light-driven, multi-electron redox processes are the foundation of natural photosynthesis that enables water splitting and, ultimately, CO2 and N2 fixation. Molecular chromophores, redox shuttles, and catalysts perform all of the key functions in an elaborate, coordinated dance. Emulating the elegance of biological photocatalysis has not yet been achieved by anthropogenic systems, but recent developments in molecular photocatalysis have demonstrated tantalizing new insights and concepts that are approaching this goal. This symposium invites contributions on the latest developments in the field of multi-electron photocatalysis toward water-splitting, CO2 reduction, and N2 fixation. Sessions will feature progress on fundamental insights in light-driven charge and ion transfer processes in molecular photocatalysts as well as systems-level molecular approaches based on molecular materials such as metal organic frameworks (MOFs) that demonstrate photocatalytic fuels production.
- Molecular and bio-inspired single-site photocatalysts
- Supramolecular photocatalytic systems including metal organic frameworks (MOFs)
- Time-resolved photodynamics and fundamental charge/ion transfer
Nate Neale received his B.A. degree in chemistry from Middlebury College in 1998, where he studied radical substitution reactions at activated arenes and the binding mode of cisplatin, a common commercial anti-cancer drug, to a model DNA fragment. His scientific training continued as a graduate student under Prof. T. Don Tilley at the University of California, Berkeley, investigating the mechanism by which a transition-metal catalyst facilitates the polymerization of stannanes to polystannanes, a class of inorganic polymers with unique optical and electronic properties. As a postdoctoral researcher at NREL, he worked on controlling the synthesis and surface chemistry of TiO2 nanostructures for dye-sensitized solar cells in the laboratories of Dr. Arthur J. Frank. After a brief stint at the University of Colorado, Boulder, during which time he worked in collaboration with Dr. Frank, Dr. Arthur J. Nozik, and Prof. David Jonas on photoelectrodes for photoelectrochemical water splitting, he returned to NREL as a staff scientist in 2008. His current research interests are focused on tailoring the chemical structure and photophysics of nanostructured inorganic semiconductors and catalysts for photovoltaics, solar fuels, batteries, and related energy conversion and storage concepts.
Roland A. Fischer, Prof. Dr. rer. nat., Dr. phil. h.c., holds the Chair of Inorganic and Metal-Organic Chemistry at the Technical University Munich (TUM) and is Director of the TUM Catalysis Research Centre. Previously he was Professor of Inorganic Chemistry at Ruhr-University Bochum (1997-2015) and Heidelberg University (1996-1997). He has been elected Vice President of the Deutsche Forschungsgemeinschaft (DFG) in 2016. He is member of the Award Selection Committee of the Alexander von Humboldt Foundation, member of the Scientific Advisory Board of the German Chemical Industry Fund and was elected member of the European Academy of Sciences. His research interest focuses on functional molecular materials for advanced applications in energy conversion, catalysis, gas storage and separation, chemical sensing, photonics and microelectronics. To illustrate, metal-rich complexes, atomic precise clusters, nanoparticles and nanocomposites can substitute rare noble metals for important catalytic transformation of small molecules. In addition, the combinatorial building-block principle of coordination network compounds such as metal-organic frameworks (MOFs) yields ample opportunities for the manipulation and design of the chemistry of coordination space in pores and channels accessible to guest molecules. The goal is to integrate chemical and physical multifunctionality in photo-active, electrical conductive, catalytic and stimuli-responsive MOFs. Currently, he is steering the DFG Priority Program 1928 “Coordination Networks: Building Blocks for Functional Systems”.
Antoni Llobet was born in Sabadell (Barcelona) in 1960.
He obtained his PhD at the Universitat Autònoma de Barcelona (UAB) with Prof. Francesc Teixidor in July 1985, and then moved to the University of North Carolina at Chapel Hill for a postdoctoral stay with Prof. Thomas J. Meyer, until the end of 1987.
After a short period again at UAB and at University of Sussex-Dow Corning (UK) he then become a Scientific Officer for the Commission of the European Communities, based in Brussels, Belgium (1990-1991).
Then he was appointed Senior Research Associate at Texas A&M University in College Station (USA) from 1992 till 1993, working with the groups of Prof. Arthur E. Martell and Donald T. Sawyer. From 1993 till 2004 he joined the faculty of the Universitat de Girona where he was promoted to Full Professor in 2000. At the end of 2004 he joined the faculty of UAB also as Full Professor.
In September 2006, he was appointed as Group Leader at the Institute of Chemical Research of Catalonia (ICIQ) in Tarragona.
His research interests include the development of tailored transition metal complexes as catalysts for selective organic and inorganic transformations including the oxidation of water to molecular dioxygen, supramolecular catalysis, the activation of C-H and C-F bonds, and the preparation low molecular weight complexes as structural and/or functional models of the active sites of oxidative metalloproteins.
In 2000 he received the Distinction Award from Generalitat de Catalunya for Young Scientists. In 2011 he was awarded the Bruker Prize in Inorganic Chemistry from the Spanish Royal Society of Chemistry (RSEQ) and in 2012 he has been awarded with the “Hermanos Elhuyar-Hans Goldschmidt” lecture jointly by RSEQ and the German Chemical Society (GDCh).
At present he is a member of the Editorial Advisory Board of “Catalysis Science and Technology” from the Royal Society of Chemistry, “Inorganic Chemistry” from the American Chemical Society and “European Journal of Inorganic Chemistry” from Wiley-VCH.
Shengqian Ma obtained his B.S. degree from Jilin University, China in 2003, and graduated from Miami University (Ohio) with a Ph.D. degree under the supervision of Hong-Cai Joe Zhou (currently at Texas A&M University) in 2008. After finishing two-year Director’s Postdoctoral Fellowship at Argonne National Laboratory, he joined the Department of Chemistry at University of South Florida (USF) as an Assistant Professor in August 2010. He was promoted to an Associate Professor with early tenure in 2015 and to a Full Professor in 2018. In August 2020, he joined the Department of Chemistry at University of North Texas (UNT) as the Robert A. Welch Chair in Chemistry.
Amanda Morris is a Professor of Inorganic and Energy Chemistry at Virginia Tech. Her research education conducted at Penn State University (B.S.), Johns Hopkins University (Ph.D.), and Princeton University (Postdoctoral) has been focused on addressing critical environmental issues with fundamental science including water remediation, solar energy harvesting and storage, and carbon dioxide conversion. As her publication record shows, Morris is a classically trained photo-electrochemist with demonstrated success utilizing various techniques (cyclic voltammetry, spectroelectrochemistry, and pulsed-laser spectroscopy) to explore new frontiers in renewable energy. Her research group’s current focus is on light-matter interactions and catalysis. She has received numerous awards for her research pursuits listed below. In addition to her academic pursuits, Morris has a demonstrated record in service including the recruitment and retention of minority chemists. In recognition of this work, she has received the Alan F. Clifford Service Award and College of Science Diversity Award. She currently serves as an American Chemical Society Expert in the area of Sustainable Energy and through this effort has worked to communicate science to the broader national audience with interviews on NPR, newspaper editorials, and press conferences. She also serves as an Associate Editor of Chemical Physics Reviews and sits on the Editorial Advisory Boards for ACS Applied Energy Materials and EnergyChem.
Maria Wächtler studied Chemistry at the Friedrich Schiller University in Jena where she also received her PhD in 2013. After a postdoctoral period at Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), she was appointed head of work group Ultrafast Spectroscopy in the department Functional Interfaces in 2015 and since 2020 she is head of work group Quantum Confined Nanostructures at Leibniz-IPHT. Her research focuses on the design of systems for light-driven water splitting based on colloidal semiconductor nanostructures and the investigation of function determining interactions and light-driven processes by (time-resolved) spectroscopy.
Halide perovskites have demonstrated remarkable performance in optoelectronic applications like light-emitting diodes and solar cells. Yet the detailed photophysics underlying their exceptional properties is far from fully understood. This symposium aims to bring together the international science community to discuss the latest advances in the photophysics of bulk and nano-scale halide perovskites and related emerging materials. We will discuss the influence of chemical composition, dimensionality, defects and structural distortions on the light-matter interactions on various time-scales, based on both experimental and theoretical insights. Together, we will explore what is special about this material class, what currently limits their applications and how to overcome these in novel designed materials to push their efficiencies even further, ultimately enabling also new applications like photodetectors or quantum technology.
- Photophysics of bulk ‘3D’ halide perovskites
- Photophysics of low-dimensional ‘2-0D’ halide perovskites
- Photophysics of halide perovskite nanocrystals, rods, platelets
- Defect photophysics
- Ultrafast phenomena (hot carriers, polaronic distortions, etc)
- Theory and simulations of the photophysical properties of halide perovskites
- Emerging perovskite-related materials
Sascha is a Tenure-Track Assistant Professor in Physical Chemistry and Head of the Laboratory for Energy Materials at EPFL (Switzerland), while he is also maintaining strong ties with the Harvard community and in particular Winthrop House which he regularly visits as NRT and SCR member.
His team employs light-matter interactions to understand the next generation of soft semiconductors with the overarching goal of maximizing energy efficiency for a sustainable future by unlocking applications ranging from flexible light-weight solar cells & displays all the way to entirely new applications in quantum information processing.
Previously, he was a research group leader and Rowland Fellow at Harvard University’s Rowland Institute. Before starting his lab at Harvard, Sascha studied Chemistry at Heidelberg University (Germany) and completed a PhD in Physics at the University of Cambridge (UK), where he subsequently worked as EPSRC Doctoral Prize Fellow.
Annamaria Petrozza received her PhD in Physics from the University of Cambridge (UK) in 2008 with a thesis on the study of optoelectronic processes at organic and hybrid semiconductors interfaces under the supervision of Dr. J.S. Kim and Prof Sir R.H. Friend. From July 2008 to December 2009 she worked as research scientist at the Sharp Laboratories of Europe, Ltd on the development of new market competitive solar cell technologies (Dye Sensitized Solar cells/Colloidal Quantum Dots Sensitized Solar cells). Since January 2010 she has a Team Leader position at the Center for Nano Science and Technology -IIT@POLIMI. She is in charge of the development of photovoltaic devices and their characterization by time-resolved and cw Photoinduced Absorption Spectroscopy, Time-resolved Photoluminescence and electrical measurements. Her research work mainly aims to shed light on interfacial optoelectronic mechanisms, which are fundamental for the optimization of operational processes, with the goal of improving device efficiency and stability.
Keshav Dani is currently an Associate Professor at the Okinawa Institute of Science and Technology (OIST), Graduate University in Okinawa, Japan. He joined OIST in Nov. 2011 as a tenure-track Assistant Professor after completing a Director’s Postdoctoral Fellowship at the Center for Integrated Nanotechnologies at Los Alamos National Laboratory. Keshav graduated from UC Berkeley in 2006 with a PhD in Physics, where he explored the nonlinear optical response of the quantum Hall system under the supervision of Daniel Chemla at LBNL. Prior to his PhD, he obtained a BS from Caltech in Mathematics with a senior thesis in Quantum Information Theory under John Preskill and Hideo Mabuchi. His current research interests lie in using novel time-resolved photoemission techniques (PEEM and ARPES) to understand the properties of photoexcited perovskite photovoltaic materials and two-dimensional semiconductor heterostructures.
Luisa De Marco received her PhD in Nanoscience from Università del Salento in 2010 working on nanostructured semiconductors for photovoltaics. Since 2016 she is researcher at CNR NANOTEC leading a 6-person team working on the development of low-dimensional inorganic and hybrid nanomaterials. She is author of more than 70 papers that collectively have received more than 2600 citations, with an h-index of 31. Among the publications stand out Advanced Materials, Nature Nanotechnology, Energy & Environmental Science, ACS Nano and Science Advances.
Her research interests focus on the development and engineering of hybrid and inorganic low-dimensional semiconductors having specifically tailored functional properties and on design and fabrication of optoelectronic devices.
Paulina Plochocka, Directrice de recherché de 2e classe (DR2) in Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS in Toulouse.
P. Plochocka obtained her PhD cum-laude in 2004 at the University of Warsaw working on the dynamics of many-body interactions between carriers in doped semi-magnetic quantum wells (QW). During her first post doc at Weizmann Institute of science, she started working on the electronic properties of a high mobility 2D electron gas in the fractional and integer quantum Hall Effect regime. She continued this topic during second post doc in LNCMI Grenoble, where she was holding individual Marie Curie scholarship. At the same time, she enlarged her interest of 2D materials towards graphene and other layered materials as TMDCs or black phosphorus. In 2012 she obtained permanent position in LNCMI Toulouse, where she created the Quantum Electronics group, which investigates the electronic and optical properties of emerging materials under extreme conditions of high magnetic field and low temperatures. Examples include semiconducting layer materials such as transition metal dichalcogenides, GaAs/AlAs core shell nanowires and organic inorganic hybrid perovskites.
Carlos Silva earned a PhD in chemical physics from the University of Minnesota, with the late Professor Paul Barbara. His graduate research focused on ultrafast polar solvation dynamics, probed by transient absorption spectroscopy on the solvated electron and transition-metal mixed-valence complexes. Following his graduate degree in 1998, he was Postdoctoral Research Fellow with Professor Sir Richard Friend at the Cavendish Laboratory, University of Cambridge, where he developed an ultrafast spectroscopy laboratory to investigate the photophysics of conjugated polymers and related organic semiconductors. In 2001, he began his independent academic career as Advanced Research Fellow of the UK Engineering and Physical Science Research Council at the Cavendish Laboratory, and simultaneously became Research Fellow in Darwin College, University of Cambridge. He moved to the Université de Montréal with a Canada Research Chair in 2005, where he developed an ultrafast spectroscopy laboratory for the study of electronic processes in organic semiconductor materials. In recognition of his rising international leadership, he was awarded the 2010 Herzberg Medal and the 2016 Brockhouse Medal by the Canadian Association of Physicists. Since 2017, Carlos’s research career at Georgia Tech has built on his previous research experiences to bring innovative optical probes of organic and hybrid organic-inorganic semiconductor materials. His research program exploits a range of spectroscopic techniques, including nonlinear ultrafast spectroscopies such as two-dimensional coherent excitation spectroscopies, and quantum spectroscopy, in which quantum properties of light are exploited to unravel light-matter interactions with intricate detail. These techniques are applied to understand key electronic processes in a wide range of materials, with many target applications in optoelectronics, on timescales ranging from femtoseconds to milliseconds. He is a Fellow of the Royal Society of Chemistry.
Since 2019, Yana Vaynzof holds the Chair for Emerging Electronic Technologies at the Technical University of Dresden. Prior to that (2014-2019), she was a juniorprofessor in the Department of Physics and Astronomy, Heidelberg University (Germany). She received a B.Sc degree (summa cum laude) in electrical engineering from the Technion - Israel Institute of Technology (Israel) in 2006, and a M.Sc. degree in electrical engineering from Princeton University, (USA) in 2008. She pursued a Ph.D. degree in physics under the supervision of Prof. Sir. Richard Friend at the Optoelectronics Group, Cavendish Laboratory, University of Cambridge (UK), and investigated the development of hybrid polymer solar cells and the improvement of their efficiency and stability. Upon completing her PhD in 2011, she joined the Microelectronics group at the University of Cambridge as a Postdoctoral Research Associate focusing on the research of surfaces and interfaces in organic and hybrid optoelectronics. Yana Vaynzof was the recipient of a number of fellowships and awards, including the ERC Starting Grant, Gordon Y. Wu Fellowship, Henry Kressel Fellowship, Fulbright-Cottrell Award and the Walter Kalkhof-Rose Memorial Prize.
The unprecedented increase in the efficiencies of metal halide perovskite photovoltaics makes them particularly promising for industrial application. One of the key challenges that remains to be overcome is related to their relatively low stability, which lags far behind that of established photovoltaic technologies. This symposium aims to bring together international key researchers working on addressing the stability issues in perovskite materials and solar cells and discuss the fundamental understanding of degradation mechanisms, new concepts and material and device design strategies towards the goal of more stable and better preforming perovskite solar cells. In particular, the symposium will cover new insights regarding the interplay between material design, device structure, materials/device processing, interfaces, charge transport, and novel characterization techniques in order to promote this emerging photovoltaic technology to real consumer products.
🥇 Two Oral Best Prizes valued at 200€ (cash) from GDR
Sponsor:
- Degradation mechanisms in perovskite materials
- Observation of degradation effects through device photophysics
- Role of extraction layers and electrodes in device stability
- Use of encapsulation and/or blocking layers for stability enhancement
- New device structures for enhanced lifetime
- Enhanced stability via compositional engineering and use of additives
- Perovskite phase stabilisation
- 2D/3D heterostructures for improved stability
- Novel experimental methods for study of degradation
Since 2019, Yana Vaynzof holds the Chair for Emerging Electronic Technologies at the Technical University of Dresden. Prior to that (2014-2019), she was a juniorprofessor in the Department of Physics and Astronomy, Heidelberg University (Germany). She received a B.Sc degree (summa cum laude) in electrical engineering from the Technion - Israel Institute of Technology (Israel) in 2006, and a M.Sc. degree in electrical engineering from Princeton University, (USA) in 2008. She pursued a Ph.D. degree in physics under the supervision of Prof. Sir. Richard Friend at the Optoelectronics Group, Cavendish Laboratory, University of Cambridge (UK), and investigated the development of hybrid polymer solar cells and the improvement of their efficiency and stability. Upon completing her PhD in 2011, she joined the Microelectronics group at the University of Cambridge as a Postdoctoral Research Associate focusing on the research of surfaces and interfaces in organic and hybrid optoelectronics. Yana Vaynzof was the recipient of a number of fellowships and awards, including the ERC Starting Grant, Gordon Y. Wu Fellowship, Henry Kressel Fellowship, Fulbright-Cottrell Award and the Walter Kalkhof-Rose Memorial Prize.
Zhuoying Chen is a CNRS researcher (Chargé de recherche) working in the Laboratoire de Physique et d’Etude des Matériaux (LPEM, CNRS-UMR 8213) at ESPCI Paris, a unit of Paris Sciences et Lettres (PSL) University in France. She received her Ph.D at Columbia University in the city of New York. After being a postdoc researcher in the Cavendish Laboratory at Cambridge University, she joined CNRS in 2010. Her main research field is on optoelectronic applications (in terms of solar cells and photodetectors) of colloidal and organic–inorganic hybrid nanomaterials synthesized from bottom-up approaches.
Professor Anita Ho-Baillie is the John Hooke Chair of Nanoscience at the University of Sydney, an Australian Research Council Future Fellow and an Adjunct Professor at University of New South Wales (UNSW). Her research interest is to engineer materials and devices at nanoscale for integrating solar cells onto all kinds of surfaces generating clean energy. She is a highly cited researcher since 2019. In 2021, she was an Australian Museum Eureka Prize Finalist and was named the Top Australian Sustainable-Energy Researcher by The Australian Newspaper Annual-Research-Magazine. She won the Royal Society of NSW Warren Prize in 2022 for her pioneering work in the development of next generation solar cells. She has been a finalist for the Australian Space Awards for various categories in 2023 and 2024. In 2024, she is the recipient of the Australian Academy of Science Nancy Millis Medal. She is a Fellow of the Australian Institute of Physics, the Royal Society of New South Wales and the Royal Society of Chemistry.
Prof. Mónica Lira-Cantú is Group Leader of the Nanostructured Materials for Photovoltaic Energy Group at the Catalan Institute of Nanoscience and Nanotechnology (www.icn.cat located in Barcelona (Spain). She obtained a Bachelor in Chemistry at the Monterrey Institute of Technology and Higher Education, ITESM Mexico (1992), obtained a Master and PhD in Materials Science at the Materials Science Institute of Barcelona (ICMAB) & Autonoma University of Barcelona (1995/1997) and completed a postdoctoral work under a contract with the company Schneider Electric/ICMAB (1998). From 1999 to 2001 she worked as Senior Staff Chemist at ExxonMobil Research & Engineering (formerly Mobil Technology Co) in New Jersey (USA) initiating a laboratory on energy related applications (fuel cells and membranes). She moved back to ICMAB in Barcelona, Spain in 2002. She received different awards/fellowships as a visiting scientist to the following laboratories: University of Oslo, Norway (2003), Riso National Laboratory, Denmark (2004/2005) and the Center for Advanced Science and Innovation, Japan (2006). In parallel to her duties as Group Leader at ICN2 (Spain), she is currently visiting scientist at the École Polytechnique Fédérale de Lausanne (EPFL, CH). Her research interests are the synthesis and application of nanostructured materials for Next-generation solar cells: Dye sensitized, hybrid, organic, all-oxide and perovskite solar cells. Monica Lira-Cantu has more than 85 published papers, 8 patents and 10 book chapters and 1 edited book (in preparation).
Maria Antonietta Loi studied physics at the University of Cagliari in Italy where she received the PhD in 2001. In the same year she joined the Linz Institute for Organic Solar cells, of the University of Linz, Austria as a post doctoral fellow. Later she worked as researcher at the Institute for Nanostructured Materials of the Italian National Research Council in Bologna Italy. In 2006 she became assistant professor and Rosalind Franklin Fellow at the Zernike Institute for Advanced Materials of the University of Groningen, The Netherlands. She is now full professor in the same institution and chair of the Photophysics and OptoElectronics group. She has published more than 130 peer review articles in photophysics and optoelectronics of nanomaterials. In 2012 she has received an ERC starting grant.
Philip Schulz holds a position as Research Director for Physical Chemistry and New Concepts for Photovoltaics at CNRS. In this capacity he leads the “Interfaces and Hybrid Materials for Photovoltaics” group at IPVF via the “Make Our Planet Great Again” program, which was initiated by the French President Emmanuel Macron. Before that, Philip Schulz has been a postdoctoral researcher at NREL from 2014 to 2017, and in the Department of Electrical Engineering of Princeton University from 2012 to 2014. He received his Ph.D. in physics from RWTH Aachen University in Germany in 2012.
This symposium will discuss all aspects of perovskite-based multi-junction solar cells, including perovskite/silicon, perovskite/chalcogenide and perovskite/perovskite tandem solar cells. Aspects discussed will be performance enhancements, stability, scaling, and commercialization efforts.
- Perovskite/silicon tandem solar cells
- Perovskite/perovskite tandem solar cells
- Perovskite/chalcogenide tandem solar cells
- Monofacial and bifacial tandems
- Performance enhancements
- Contact engineering
- Scaling
- Stability
- Commercialization
Dr. Fan Fu is a group leader at Empa-Swiss Federal Laboratories for Materials Science and Technology. He received his bachelor's and master's degrees in materials science from the Wuhan University of Technology in 2010 and 2013, respectively. He joined Prof. Ayodhya N. Tiwari's group as a Ph.D. student in 2014 and earned his Ph.D. degree from ETH Zürich with distinction in 2017. His doctoral thesis on perovskite-CIGS thin-film tandem solar cells was awarded ETH Medal. From January 2018 to May 2019, he worked as a postdoc researcher in Prof. Christophe Ballif's group at EPFL. In June 2019, he joined Empa as a group leader. He is currently leading a research team investigating novel perovskite semiconductors for energy and optoelectronics applications. In particular, his group's recent research efforts focus on upscaling high-performance perovskite-based tandem solar cells and mini-modules on flexible substrates.
November 2021, Jan Christoph Goldschmidt has started as professor of Physics of Solar Energy Conversion at the University of Marburg, Germany.
Before, he has been Head of Group "Novel Solar Cells Concepts" at Fraunhofer ISE, Freiburg, Germany since 2010. In 2012/2013 he visited Imperial College, London, UK and the MCC Berlin, Germany for research stays.
He received his PhD from the University of Konstanz, Germany for his work at Fraunhofer ISE. He studied Physics at the Albert-Ludwigs University Freiburg and the UNSW, Sydney, Ausstralia.
Tomas obtained his PhD at Oxford for his work understanding degradation mechanisms and photophysical processes in dye sensitized and perovskite solar cells. He was a Marie Curie fellow at Stanford, where he co-developed the first all-perovskite tandem solar cells and helped develop the perovskite-silicon tandem solar cells that became the first points on the NREL chart for these tandems. He then carried that research further at the National Renewable Energy Laboratory as a Staff Scientist. He is a co-founder and the chief technical officer of Swift Solar, which is developing and commercializing perovskite tandem PV.
Dr Laura Miranda Perez is the Head of Materials Research and Characterisation at Oxford PV, a spin-out of Oxford University that is commercialising perovskites for photovoltaic applications. Laura has a strong background in materials synthesis and characterisation. Prior to joining Oxford PV she was a fellow at the University of Oxford, where her work focused on perovskites and carbon materials. Before this, Laura held a fellowship in perovskite thin film materials at the College du France in Paris. Laura undertook her PhD in Madrid, Spain and Sheffield, UK, in the screening of new families of hexagonal perovskite materials.
Metal-halide perovskite nanocrystals have emerged as the latest generation of semiconductor quantum dots, with their unique chemistry and physics rooted into rather ionic chemical bonding, soft- and dynamic lattices and facile compositional engineering. Lead halide perovskites (APbX3, A=MA, FA, Cs; X=Cl, Br, I) can be synthesized in the form of brightly luminescent nanocrystals with photoluminescence spanning the entire visible spectral range. In the last years their optical and electronic properties have attracted the attention of many researchers from various fields of science.
This symposium brings together experimentalists and theoreticians who are investigating various fundamental processes in perovskite nanomaterials, from the synthesis and surface chemistry to structural and optical characterization, theoretical modelling and device applications. It provides a forum for discussing the latest scientific discoveries in these exciting new research areas bridging material science with optoelectronics and quantum technologies.
- Chemistry –synthesis methods, surface chemistry, self-assembly, new compositions
- Optical spectroscopy – carrier dynamics at ensemble and single dot level, stimulated emission, photon statistics
- Structural Characterization – Advanced X-ray Diffraction and Electron Microscopy
- Theory – band structure calculations, exciton-phonon coupling, fine-structure splitting, surface pasivation
- Devices – LCD, LEDs, microcavity lasers, photodetectors, scintillators, solar concentrators etc.
Maksym Kovalenko has been a tenure-track Assistant Professor of Inorganic Chemistry at ETH Zurich since July 2011 and Associate professor from January 2017. His group is also partially hosted by EMPA (Swiss Federal Laboratories for Materials Science and Technology) to support his highly interdisciplinary research program. He completed graduate studies at Johannes Kepler University Linz (Austria, 2004-2007, with Prof. Wolfgang Heiss), followed by postdoctoral training at the University of Chicago (USA, 2008-2011, with Prof. Dmitri Talapin). His present scientific focus is on the development of new synthesis methods for inorganic nanomaterials, their surface chemistry engineering, and assembly into macroscopically large solids. His ultimate, practical goal is to provide novel inorganic materials for optoelectronics, rechargeable Li-ion batteries, post-Li-battery materials, and catalysis. He is the recipient of an ERC Consolidator Grant 2018, ERC Starting Grant 2012, Ruzicka Preis 2013 and Werner Prize 2016. He is also a Highly Cited Researcher 2018 (by Clarivate Analytics).
Alexander S. Urban studied Physics at the University of Karlsruhe (Germany) obtaining an equivalent to an M.Sc. degree (German: Dipl. Phys.) at the University of Karlsruhe (Germany) in 2006. During his studies he spent a year at Heriot Watt University (UK), where he obtained an M.Phys. in Optoelectronics and Lasers in 2005. He then joined the Photonics and Optoelectronics Chair of Jochen Feldmann at the Ludwig-Maximilians-University (LMU) Munich (Germany) in 2007 where he worked on the optothermal manipulation of plasmonic nanoparticles, earning his Ph.D. summa cum laude in 2010. He expanded his expertise in the fields of plasmonics and nanophotonics in the group of Naomi J. Halas at the Laboratory for Nanophotonics at Rice University (Houston, TX, USA), beginning in 2011. He returned to the LMU in 2014 to become a junior group leader with Jochen Feldmann, where he led the research thrusts on optical spectroscopy, focusing on hybrid nanomaterials such as halide perovskite nanocrystals and carbon dots. In 2017 he was awarded a prestigious Starting Grant from the European Research Council and shortly after that in 2018 he received a call as a Full Professor of Physics (W2) at the LMU. Here, he now leads his own research group working on nanospectroscopy in novel hybrid nanomaterials.
Perovskite solar cells (PSCs) represent one of the most promising emerging photovoltaic (PV) technologies. Their high power conversion efficiency going beyond 25% and aproching the performance of the well-established crystalline silicon PV cells, together with the possibility to be fabricated by cost-effective solution-based printing and coating methods brings a promising future for this technology to shortly enter the marketplace. The feasibility of PSCs commercialization already has been demonstrated by several research groups in academia and industry. There are still multiple challenges that need to be addressed to translate the perovskite PV technology from lab to fab.
This symposium aims to bring together global experts in perovskite photovoltaics and provide a forum for discussion of the key problems and emerging solutions paiving a way toward practical implementation of PSCs. A particular focus will be made on the rational design of advanced absorber and charge-transport materials, interface engineering as well as new device concepts for improving device efficiencies and extending their lifetimes. Technological approaches to upscaling the perovskite solar cells, enabling their large-scale production using high-throughput roll-to-roll coating and printing techniques and perspectives of their commercialization will be discussed.
- Advanced perovskite absorber materials based on lead halides and beyond
- Mixed dimensional 2D/3D perovskites
- All-inorganic perovskites
- Interface engineering for improved efficiency and stability
- Material and device stability issues
- Efficient solution for PSCs encapsulation
- Device upscaling
- Major technological challenges in perovskite PV
- Perspectives of terrestrial and space applications of perovskite PV
Eugene A. Katz received his MSc degree (1982) in Semiconductor Materials Science and Ph. D. (1990) in solid state physics from the Moscow Institute of Steel and Alloys. In 1995, he joined the Ben-Gurion University of the Negev and has been working in the Department for Solar Energy and Environmental Physics ever since (now as a full professor). His research interests include a wide range of photovoltaic materials and devices, such as organic and perovskite-based photovoltaics, concentrator solar cells operated at ultra-high solar concentration (up to 10,000 suns), etc. He has published more than 120 peer-reviewed papers on these topics. In 2018 Prof. Katz was awarded the IAAM Medal (by the International Association of Advanced Materials) for the outstanding research in the field of New Energy Materials & Technology.
Christoph J. Brabec is holding the chair “materials for electronics and energy technology (i-MEET)” at the materials science of the Friedrich Alexander University Erlangen-Nürnberg. Further, he is the scientific director of the Erlangen division of the Bavarian research institute for renewable energy (ZAE Bayern, Erlangen).
He received his PhD (1995) in physical chemistry from Linz university, joined the group of Prof Alan Heeger at UCSB for a sabbatical, and continued to work on all aspects of organic semiconductor spectroscopy as assistant professor at Linz university with Prof. Serdar Sariciftci. He joined the SIEMENS research labs as project leader for organic semiconductor devices in 2001 and joined Konarka in 2004, where he was holding the position of the CTO before joining university.
He is author and co-author of more than 150 papers and 200 patents and patent applications, and finished his habilitation in physical chemistry in 2003.
Dr. Annalisa Bruno is a Principal Scientist at the Energy ResearchInstitute at Nanyang Technological University (ERI@N) coordinating a team working on perovskite high-efficiency solar cells and modules by thermal evaporation. Annalisa is also a tenured Scientist at Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA). Previously Annalisa was a Post-Doctoral Research Associate at Imperial College London. Annalisa received her B.S., M.S., and Ph.D. Degrees in Physics from the University of Naples Federico II. Her research interests include perovskite light-harvesting and charge generation properties and their implementation in solar cells and optoelectronic devices.
Aldo Di Carlo is Director of the Institute of Structure of Matter of the National Research Council and Full Professor of Optoelectronics and Nanoelectronics at the Department of Electronics Engineering of the University of ROme "Tor Vergata". His research focuses on the study and fabrication of electronic and optoelectronic devices, their analysis and their optimization. Di Carlo founded the Center for Hybrid and Organic Solar Cells (CHOSE) which nowadays involve more than40 researchers dealing with the development of III generation solar cells (DSC, OPV and Perovskite) and on scaling-up of these technologies for industrial applications. CHOSE has generated 6 spin-off companies and a public/private partnership. Di Carlo is author/coauthor of more than 500 scientific publications in international journals, 13 patents and has been involved in several EU projects (three as EU coordinator)
Giulia is Associate Professor at Physical Chemistry Unit at University of Pavia, leading the PVsquared2 team, and running the European Grant ERCStG Project “HYNANO”aiming at the development of advanced hybrid perovskites materials and innovative functional interfaces for efficient, cheap and stable photovoltaics. Within this field, Giulia contributed to reveal the fundamental lightinduced dynamical processes underlying the operation of such advanced optoelectronic devices whose understanding is paramount for a smart device development and for contributing to the transition of a green economy.
Giulia received an MS in Physical Engineering in 2008 and obtained her PhD in Physics cum laude in 2012 at the Politecnico of Milan. Her experimental thesis focused on the realisation of a new femtosecond-microscope for mapping the ultrafast phenomena at organic interfaces. During her PhD, she worked for one year at the Physics Department of Oxford University where she pioneered new concepts within polymer/oxide solar cell technology. From 2012-2015, she was a post-doctoral researcher at the Italian Institute of Technology in Milan. In 2015, she joined the Ecole Polytechnique Fédérale de Lausanne (EPFL) with a Co-Funded Marie Skłodowska-Curie Fellowship. From 2016 to 2019, she has been awarded by the Swiss Ambizione Energy Grant providing a platform to lead her independent research group at EPFL focused on the developemnt of new generation hybrid perovskite solar cells.
She is author of 90 peer-reviewed scientific papers bringing her h-index to 44 (>13’000 citations), focused on developement and understanding of the interface physics which governs the operation of new generation solar cells.
Recently, she received the USERN prize in Physical Science, the Swiss Physical Society Award in 2018 for Young Researcher and the IUPAP Young Scientist Prize in Optics. She is currently USERN Ambassador for Italy and board member of the Young Academy of Europe.
More can be found at https://pvsquared2.unipv.it.
Weblink: https://people.epfl.ch/giulia.grancini?lang=en
Prof. Mónica Lira-Cantú is Group Leader of the Nanostructured Materials for Photovoltaic Energy Group at the Catalan Institute of Nanoscience and Nanotechnology (www.icn.cat located in Barcelona (Spain). She obtained a Bachelor in Chemistry at the Monterrey Institute of Technology and Higher Education, ITESM Mexico (1992), obtained a Master and PhD in Materials Science at the Materials Science Institute of Barcelona (ICMAB) & Autonoma University of Barcelona (1995/1997) and completed a postdoctoral work under a contract with the company Schneider Electric/ICMAB (1998). From 1999 to 2001 she worked as Senior Staff Chemist at ExxonMobil Research & Engineering (formerly Mobil Technology Co) in New Jersey (USA) initiating a laboratory on energy related applications (fuel cells and membranes). She moved back to ICMAB in Barcelona, Spain in 2002. She received different awards/fellowships as a visiting scientist to the following laboratories: University of Oslo, Norway (2003), Riso National Laboratory, Denmark (2004/2005) and the Center for Advanced Science and Innovation, Japan (2006). In parallel to her duties as Group Leader at ICN2 (Spain), she is currently visiting scientist at the École Polytechnique Fédérale de Lausanne (EPFL, CH). Her research interests are the synthesis and application of nanostructured materials for Next-generation solar cells: Dye sensitized, hybrid, organic, all-oxide and perovskite solar cells. Monica Lira-Cantu has more than 85 published papers, 8 patents and 10 book chapters and 1 edited book (in preparation).
Tsutomu (Tom) Miyasaka received his Doctor of Engineering from The University of Tokyo in 1981. He joined Fuji Photo Film, Co., conducting R&Ds on high sensitivity photographic materials, lithium-ion secondary batteries, and design of an artificial photoreceptor, all of which relate to electrochemistry and photochemistry. In 2001, he moved to Toin University of Yokohama (TUY), Japan, as professor in Graduate School of Engineering to continue photoelectrochemistry. In 2006 to 2009 he was the dean of the Graduate School. In 2004 he has established a TUY-based company, Peccell Technologies, serving as CEO. In 2005 to 2010 he served as a guest professor at The University of Tokyo.
His research has been focused to light to electric energy conversion involving photochemical processes by enhancing rectified charge transfer at photo-functional interfaces of semiconductor electrodes. He has contributed to the design of low-temperature solution-printing process for fabrication of dye-sensitized solar cells and solid-state hybrid photovoltaic (PV) cells. Since the discovery of the organic inorganic hybrid perovskite as PV material in 2006 and fabrication of high efficiency PV device in 2012, his research has moved to R&Ds of the lead halide perovskite PV device. He has promoted the research field of perovskite photovoltaics by organizing international conferences and by publishing many papers on enhancement of PV efficiency and durability, overall citation number of which is reaching more than 5,000 times. In 2009 he was awarded a Ministry of Science & Education prize on his achievements of green sustainable solar cell technology. In 2017 he received Chemical Society of Japan (CSJ) Award. He is presently directing national research projects funded by Japan Science and Technology Agency (JST) and Japan Aerospace Exploration Agency (JAXA).
Dr. Md. K. Nazeeruddin received M.Sc. and Ph. D. in inorganic chemistry from Osmania University, Hyderabad, India. His current research focuses on Dye-sensitized solar cells, Hydrogen production, Light-emitting diodes and Chemical sensors. He has published more than 400 peer-reviewed papers, nine book chapters, and inventor of 49 patents. The high impact of his work has been recognized with invitations to speak at over 100 international conferences. He appeared in the ISI listing of most cited chemists, and has more than 10000 citations with an h-index of 93. He is directing, and managing several industrial, national, and European Union projects on Hydrogen energy, Photovoltaics (DSC), and Organic Light Emitting Diodes. He was awarded EPFL Excellence prize in 1998 and 2006, Brazilian FAPESP Fellowship in 1999, Japanese Government Science & Technology Agency Fellowship, in 1998, Government of India National Fellowship in 1987-1988. Recently he has been appointed as World Class University (WCU) professor for the period of March 1, 2009 ~ December 31, 2012 by the Korea University, Jochiwon, Korea.
Sam Stranks is Professor of Optoelectronocs and Royal Society University Research Fellow in the Department of Chemical Engineering & Biotechnology and the Cavendish Laboratory, University of Cambridge. He obtained his DPhil (PhD) from the University of Oxford in 2012. From 2012-2014, he was a Junior Research Fellow at Worcester College Oxford and from 2014-2016 a Marie Curie Fellow at the Massachusetts Institute of Technology. He established his research group in 2017, with a focus on the optical and electronic properties of emerging semiconductors for low-cost electronics applications.
Sam received the 2016 IUPAP Young Scientist in Semiconductor Physics Prize, the 2017 Early Career Prize from the European Physical Society, the 2018 Henry Moseley Award and Medal from the Institute of Physics, the 2019 Marlow Award from the Royal Society of Chemistry, the 2021 IEEE Stuart Wenham Award and the 2021 Philip Leverhulme Prize in Physics. Sam is also a co-founder of Swift Solar, a startup developing lightweight perovskite PV panels, and an Associate Editor at Science Advances.
Since 2019, Yana Vaynzof holds the Chair for Emerging Electronic Technologies at the Technical University of Dresden. Prior to that (2014-2019), she was a juniorprofessor in the Department of Physics and Astronomy, Heidelberg University (Germany). She received a B.Sc degree (summa cum laude) in electrical engineering from the Technion - Israel Institute of Technology (Israel) in 2006, and a M.Sc. degree in electrical engineering from Princeton University, (USA) in 2008. She pursued a Ph.D. degree in physics under the supervision of Prof. Sir. Richard Friend at the Optoelectronics Group, Cavendish Laboratory, University of Cambridge (UK), and investigated the development of hybrid polymer solar cells and the improvement of their efficiency and stability. Upon completing her PhD in 2011, she joined the Microelectronics group at the University of Cambridge as a Postdoctoral Research Associate focusing on the research of surfaces and interfaces in organic and hybrid optoelectronics. Yana Vaynzof was the recipient of a number of fellowships and awards, including the ERC Starting Grant, Gordon Y. Wu Fellowship, Henry Kressel Fellowship, Fulbright-Cottrell Award and the Walter Kalkhof-Rose Memorial Prize.
Sjoerd Veenstra - Program Manager Perovskite Solar Cells and Modules at TNO, partner in Solliance.
Sjoerd has a passion for photovoltaics (PV). He received his PhD from the University of Groningen (2002). Sjoerd stayed at UCSB (intern) and Cornell University (visiting scientist). He started as a researcher working on organic solar cells at the Energy research Center of the Netherlands (ECN, 2002). In 2011 he moved to Eindhoven (NL) when ECN joined the thin film PV activities of Solliance. He started working on perovskite solar cells in 2014. In 2018 ECN and TNO merged and since he works for TNO and leads the perovskite team.
Senol Öz obtained his diploma in chemistry in 2013 at the University of Cologne
(Germany). Completing his PhD under supervision of Prof. Sanjay Mathur in 2018 at
University of Cologne (Merck KGaA PhD scholarship). In 2019 he joined Prof.
Tsutomu Miyasaka`s group as a post-doctoral fellow at Toin University of Yokohama
under a JSPS scholarship. His research interests include the synthesis, chemical
engineering, and solution processing of inorganic-organic hybrid metal halide
perovskite materials for photovoltaic application. He is currently a senior R&D project
leader at Saule Technologies and managing director of Solaveni GmbH.
The symposium will focus on the development of semiconductor colloidal nanocrystals as quantum emitters of individual photons and their potential application in quantum technologies. Despite the detailed studies carried out in the last decades, colloidal nanocrystals have yet to see application in quantum devices. This calls for further synthetic and photophysical studies for this class of nanomaterials to reach performances comparable to other single- or entangled-photon generation technologies and finally take advantage of their versatile solution processability and room temperature operation. The symposium will discuss the current challenges that semiconductor nanocrystals are facing (e.g. tuning of the Auger recombination, slow recombination rates, large emission linewidth, fluorescence intermittency…) and the solutions that are currently envisioned so that this class of semiconductors can progress from the consumer electronics market to the quantum world
- Synthesis of colloidal nanocrystals for optimized single- or entangled-photon generation
- Methods to control single- and multiexciton recombination rates in single nanocrystals
- New semiconductor nanocrystals for single-photon generation
- Multi-exction processes and their spectroscopy in single nanocrystals
- Application of colloidal seminconductor nanocrystals as quantum light sources
Dr. Francesco Di Stasio obtained a Ph.D. in Physics at University College London (UK) in 2012. He then worked as a research Scientist at Cambridge Display Technology (Sumitomo Chemical group, UK) until he undertook postdoctoral research at the Istituto Italiano di Tecnologia (IIT, Italy). In 2015 he was awarded a Marie Skłodowska-Curie Individual Fellowship at the Institute of Photonic Sciences (ICFO, Spain). Since 2020 he is Principal Investigator of the Photonic Nanomaterials group at IIT after being awarded an ERC Starting grant. Francesco is a materials scientist with more than 10 years of research experience in optoelectronics.
Current research interests and methodology: Nanomaterials for classical and non-classical light-sources: This research activity focuses on the investigation of synthetic routes to obtain highly luminescent semiconductor colloidal nanocrystals and exploit such material in light-emitting diodes (LEDs). Here, we study how chemical treatments of colloidal nanocrystals can promote enhanced performance in devices, and physico-chemical properties of nanocrystals (e.g. self-assembly and surface chemistry) can be exploited to fabricate optoelectronic devices with innovative architectures. Novel methods and materials for light-emitting diodes: The group applies materials science to optoelectronics by determining which fabrication parameter lead to enhanced performance in LEDs. In order to transition from classical to non-classical light-sources based on colloidal nanocrystals, the group is developing novel methods for controlling the deposition and positioning of an individual nanocrystals in the device. Both “top-down” and “bottom-up” approaches are investigated.
I obtained my PhD degree in applied physics at Ghent University in 2009, studying near-infrared lead salt quantum dots. This was followed by a postdoc on quantum dot emission dynamics at Ghent University in collaboration with the IBM Zurich research lab. In 2012 I joined the Istituto Italiano di Tecnologia, where I led the Nanocrystal Photonics Lab in the Nanochemistry Department. In 2017 I returned to Ghent University as associate professor, focusing mostly on 2D and strained nanocrystals. The research in our group ranges from the synthesis of novel fluorescent nanocrystals to optical spectroscopy and photonic applications.
Jennifer A. Hollingsworth is a Los Alamos National Laboratory (LANL) Fellow and Fellow of the American Physical Society, Division of Materials Physics, and The American Association for the Advancement of Science. She currently serves as Councilor for the Amercan Chemical Society Colloid & Surface Chemistry Division. She holds a BA in Chemistry from Grinnell College (Phi Beta Kappa) and a PhD degree in Inorganic Chemistry from Washington University in St. Louis. She joined LANL as a Director’s Postdoctoral Fellow in 1999, becoming a staff scientist in 2001. In 2013, she was awarded a LANL Fellows’ Prize for Research for her discovery and elaboration of non-blinking “giant” quantum dots (gQDs). In her role as staff scientist in the Center for Integrated Nanotechnologies (CINT; http://www.lanl.gov/expertise/profiles/view/jennifer-hollingsworth), a US DOE Nanoscale Science Research Center and User Facility, she endeavors to advance fundamental knowledge of optically active nanomaterials, targeting the elucidation of synthesis-nanostructure-properties correlations toward the rational design of novel functional materials. Her gQD design has been extended to multiple QD and other nanostructure systems, and several are being explored for applications from ultra-stable molecular probes for advanced single-particle tracking to solid-state lighting and single-photon generation. A recent focus of her group is to advance scanning probe nanolithography for precision placement of single nanocrystals into metasurfaces and plasmonic antennas.
Agnès Maître obtained in 1994 the grade of Doctor of the Ecole Polytechnique for her work performed in the domain of non linear optics and atomic physics: in Laboratoire Kastler Brossel, she used to study “self generated transverse optical instabilities in rubidium vapor”. She became in 1995 assistant professor of University Denis Diderot and laboratoire Kastler Brossel. She used to work in the fields of continuous variable quantum optics and quantum imaging. She used to study temporal and spatial quantum correlations for beams emitted by an optical parametric oscillator. Since 2005, she has a position of professor at Sorbonne university and works in the Institut des NanoSciences de Paris. She is now involved in nanophotonics. More specifically, she is studying plasmonic nanoantenna, single photon sources, and emission of a single emitter in a highly confined nanostructured environment. She is author of over 70 publications in peer reviewed international journals and co-inventor of 2 patents.
As the field of semiconductor nanocrystal material gained maturity, the nanocrystals got integrated into a large variety of applications. Display is certainly the most strinking example, demonstrating viability of semiconductor nanocrystals at the industrial scale. Nowadays applications of nanocrystals got expanded far away from this fisrt mass maket. They are now being used as single photon source, biomarkers and active material for optoelectronic devices such as solar cell, LED and infrared camera. This variety of topic raises the need for a joint event where all actors of the field can share progresses and combine them together into next generation of applications that rely on today’s basic science.
- Nanocrystal synthesis :new material and structural control
- Surface chemistry toward higher stability, enhanced optical feature and improved charge transprt
- Spectroscopic properties : static and dynamics
- Electronic structure measurement and theoretical modelling
- Nanocrystal based device : field effect transistor, detector and LED
- Application display, smart window, camera…
Emmanuel is an ESPCI engineer and hold a master degree from universite Pierre and marie Curie in condensed matter physics. He did his PhD under supervision of Emmanuel Rosencher on the transport properties of superlattices used as infrared detector. He then did post doc in the group of Guyot Sionnest and Dubertret, working on the optoelectronic properties of nanocrystals. Since 2015 he is a CNRS researcher at Insitute for Nanoscience at Sorbonne Université. His team is dedicated to optoelectronic of confined nanomaterials
i
Professor Uri Banin is the incumbent of the Larisch Memorial Chair at the Institute of Chemistry and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem (HU). Dr. Banin was the founding director of the Harvey M. Kreuger Family Center for Nanoscience and Nanotechnology (2001-2010) and led the program of the Israel National Nanotechnology Initiative at HU (2007-2010). He served on the University’s Executive Committee and on its board of managers and was a member of the board of Yissum. He served on the scientific advisory board of Nanosys. In 2009 Banin was the scientific founder of Qlight Nanotech, a start-up company based on his inventions, developing the use of nanocrystals in display and lighting applications. Since 2013, Banin is an Associate Editor of the journal Nano Letters. His distinctions include the Rothschild and Fulbright postdoctoral fellowships (1994-1995), the Alon fellowship for young faculty (1997-2000), the Yoram Ben-Porat prize (2000), the Israel Chemical Society young scientist award (2001), the Michael Bruno Memorial Award (2007-2010), and the Tenne Family prize for nanoscale science (2012). He received two European Research Council (ERC) advanced investigator grant, project DCENSY (2010-2015), and project CoupledNC (2017-2022). Banin’s research focuses on nanoscience and nanotechnology of nanocrystals and he authored over 180 scientific publications in this field that have been extensively cited.
Maria Ibáñez was born in La Sénia (Spain). She graduated in physics at the University of Barcelona, where she also obtained her PhD in 2013, under the supervision of Prof. Dr. Cabot and Prof. Dr. Morante. Her PhD thesis was qualified Excellent Cum Laude and awarded with the Honors Doctorate by the University of Barcelona. Her PhD research was funded by a Spanish competitive grant (FPU) which supported her to conduct short-term research stays in cutting-edge laboratories. In particular she worked at CEA Grenoble (2009), the University of Chicago (2010), the California Institute of Technology (2011), the Cornell University (2012) and the Northwestern University (2013). In 2014, she joined the group of Prof. Dr. Kovalenko at ETH Zürich and EMPA as a research fellow where in 2017 she received the Ružička Prize. In September 2018 she became an Assistant Professor (tenure-track) at IST Austria and started the Functional Nanomaterials group.
Ferry Prins is a tenure-Track Group leader at the Condesed Matter Physics Center (IFIMAC) of the Universidad Autonoma de Madrid. Ferry obtained an MSc in Chemistry from Leiden University (2007) and a PhD in Physics from the Kavli Institute of Nanoscience at Delft University of Technology (2011). After completion of his PhD, he joined the the group of Prof. Will Tisdale at Massachusetts Institute of Technology (MIT). There, he started exploring the optical properties of nanomaterial assemblies with an emphasis on excitonic energy-transfer interactions. In 2014 he moved to ETH Zurich for a postdoc with Prof. David Norris at the Optical Materials Engineering Laboratory. With support from the Swiss National Science Foundation, he started an independent group at ETH in 2015. In Spring 2017 he joined he Condensed Matter Physics Center (IFIMAC) at the Autonoma University of Madrid where he directs the Photonic Nanomaterials and Devices Lab. His group specializes in the development of light-management strategies for semiconductor nanomaterials.
Peter Reiss is researcher at the Interdisciplinary Research Institute of Grenoble (IRIG), France, and Head of the Laboratory Synthesis, Structure and Properties of Functional Materials (STEP). He graduated from University of Karlsruhe (Germany), and earned his PhD in Inorganic Chemistry under the supervision of Prof. Dieter Fenske (2000). His research activities focus on the synthesis and properties of colloidal semiconductor quantum dots and metal halide perovskites (nanoparticles and thin films). The studied applications range from biological imaging / detection over LEDs and displays to new strategies for energy conversion (photovoltaics, thermoelectrics, photocatalysis) and storage. Dr. Reiss acts as Associate Editor for Nanoscale Research Letters and Frontiers in Materials - Energy Materials, and is Editorial Board Member of Scientific Reports. He co-organizes the biennial conference NaNaX – Nanoscience with Nanocrystals (cf. http://nanax.org).
Celso de Mello Donega is an Associate Professor in the Chemistry Department of the Faculty of Sciences at Utrecht University in the Netherlands. His expertise is in the field of synthesis and optical spectroscopy of luminescent materials. His research is focused on the chemistry and optoelectronic properties of nanomaterials, with particular emphasis on colloidal nanocrystals and heteronanocrystals.
Organic semiconductors (OSC) have been widely used in electronic devices spanning light- harvesting and light-emitting devices and transistors. Research typically deals with the generation and transport of electronic charge carriers that form the basis of the active research field of organic electronics. More recently, new research directions have emerged, especially the study of ionic transport and mixed coupled ionic-electronic charge transport in OSCs. This field has created new opportunities for organic materials in electrochemical and photo-electrochemical devices. The symposium aims to answer fundamental questions on how ion/electron pairs move within organic materials, the surface chemistries involved in such transport, and physical properties that support ion transport in the bulk as uncovered in recent experimental and theoretical works. Additionally, the symposium will provide an overview of new devices and technologies, including neuromorphic computing, energy storage and conversion technologies, photocatalysis, and electrochromic displays. The symposium further aims to bring together researchers from various backgrounds in an open-minded research atmosphere to learn from each other, discuss new findings and form new collaborations to push forward the field of organic mixed-ionic electronic conductors (OMIECs). The organizers are looking forward to receiving contributions from material chemists as well as experimentalists and theorists, exploring the unique properties of OMIECs.
- Neuromorphic computing
- Energy storage and energy conversion technologies
- Photocatalysis
- Actuators
- Electrochromic displays (ECDs)
-
Darren J. Lipomi earned his bachelor’s degree in chemistry with a minor in physics as a Beckman Scholar at Boston University in 2005. He earned his PhD in chemistry at Harvard University in 2010, with Prof. George M. Whitesides, where he was supported by a fellowship from the ACS Organic Division. From 2010 – 2012, he was an Intelligence Community Postdoctoral Fellow in the laboratory of Prof. Zhenan Bao at Stanford University. He is now a Professor in the Department of NanoEngineering and Program in Chemical Engineering at the University of California, San Diego. His research interests include the chemistry of organic materials, especially the mechanical properties of pi-conjugated polymers for flexible solar cells, biomechanical sensors, and phenomena that occur at the intersection of materials chemistry with human perception and cognition. He is the recipient of the NSF BRIGE award, the AFOSR Young Investigator Program award, the NIH Director’s New Innovator Award, and the Presidential Early Career Award for Scientists and Engineers. He hosts a podcast, “Molecular Podcasting with Darren Lipomi” and associated YouTube channel (Darren_Lipomi) that together have >10,000 subscribers. These venues serve as a resource to students, postdocs, and other early-career researchers. His research website is lipomigroup.org.
Jodie L. Lutkenhaus is holder of the Axalta Chair and Professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University. Lutkenhaus received her B.S. in Chemical Engineering in 2002 from The University of Texas at Austin and her Ph.D in Chemical Engineering in 2007 from Massachusetts Institute of Technology. Current research areas include polyelectrolytes, redox-active polymers, energy storage, and composites. She has received recognitions including World Economic Forum Young Scientist, Kavli Fellow, NSF CAREER, AFOSR Young Investigator, 3M Non-tenured Faculty Award. She is the past-Chair of the AICHE Materials Engineering & Sciences Division. Lutkenhaus is the Deputy Editor of ACS Applied Polymer Materials and a member of the U.S. National Academies Board of Chemical Sciences & Technology.
Jenny Nelson is a Professor of Physics at Imperial College London, where she has researched novel varieties of material for use in solar cells since 1989. Her current research is focussed on understanding the properties of molecular semiconductor materials and their application to organic solar cells. This work combines fundamental electrical, spectroscopic and structural studies of molecular electronic materials with numerical modelling and device studies, with the aim of optimising the performance of plastic solar cells. She has published around 200 articles in peer reviewed journals, several book chapters and a book on the physics of solar cells.
Nanomaterials are ubiquitous, bringing energy efficiency, device miniaturization and unique functionality to a wide range of applications, from general consumer products to high-end memory and energy technologies. The progress of nanotechnology relies majorly on chemical design of basic building blocks, such as nanoparticles, nanoplates, clusters, MOFs, thin films and superlattices. This symposium is a continuation of successful series, inviting contributions on recent challenges to enhance the nanomaterials performance. The symposium will cover a wide range of topics for metal oxides, chalcogenides, halide perovskites, and (inter)metallic nanomaterials. The discussions will be centered on the fundamental chemical processes during the synthesis of nanomaterials, the engineering of the surface for various morphologies and characterization techniques for the structural origin of nanomaterials functionality. The proposed topics will target to link the structure- composition design with physical properties of nanomaterials and therefore to accelerate their use for a broad range of technologies.
- Advanced synthetic routes to engineer functional nanomaterials in various forms (colloids, nanopowders, nanomaterials on templates, nanoporous materials) and various morphology (nanoparticles, nanoplates, clusters, thin films).
- Surface engineering of nanomaterials to enable a device functionality (ligand exchange, surface reactions, core/shell growth).
- Characterization techniques to study the structural features of nanomaterials, their surface and the mechanism of the reaction pathway (in-situ and ex-situ methods).
- Theoretical calculations to elucidate the reaction mechanism and structural origin of nanomaterials functionality.
Maksym Yarema received his master degree in Chemistry from Lviv National University (Ukraine) in 2007. From 2008 to 2012, he worked towards his doctorate degree at the Johannes Kepler University Linz (Austria) under supervision of Prof. W. Heiss. In 2012, he joined the research group of Prof. M. V. Kovalenko at EMPA as Marie-Curie fellow. Since 2013, he is working in the Institute for Electronics, ETH Zurich (the research group of Prof. V. Wood), where he received the SNSF Ambizione Fellowship in 2016 and the ERC Starting Grant in 2019. His research interest spans various topics of solid-state and physical chemistry as well as chemical engineering. Particular focus is given for colloidal nanomaterials, their synthetic approaches and applications into optoelectronic devices, memory cells, and lithium-ion batteries.
Maria Ibáñez was born in La Sénia (Spain). She graduated in physics at the University of Barcelona, where she also obtained her PhD in 2013, under the supervision of Prof. Dr. Cabot and Prof. Dr. Morante. Her PhD thesis was qualified Excellent Cum Laude and awarded with the Honors Doctorate by the University of Barcelona. Her PhD research was funded by a Spanish competitive grant (FPU) which supported her to conduct short-term research stays in cutting-edge laboratories. In particular she worked at CEA Grenoble (2009), the University of Chicago (2010), the California Institute of Technology (2011), the Cornell University (2012) and the Northwestern University (2013). In 2014, she joined the group of Prof. Dr. Kovalenko at ETH Zürich and EMPA as a research fellow where in 2017 she received the Ružička Prize. In September 2018 she became an Assistant Professor (tenure-track) at IST Austria and started the Functional Nanomaterials group.
i
Giuseppe Portale is associate professor at the Zernike Institute for Advanced Materials, University of Groningen, the Netherlands. He received his Ph.D. degree in Chemistry from the University La Sapienza, Rome and he carried out postdoc research at the ESRF in Grenoble. From 2009 to 2015 he was beamline responsible at the ESRF and in 2015 he was appointed as professor at the University of Groningen. He is the head of the Polymer Physics group, focusing on the study of structure-property relationship in polymer-based materials and on the influence of processing conditions on the final structure of polymer specimens and devices.
Professor Wendy L. Queen received her Ph.D. from Clemson University (USA) in 2009. Afterwards, she accepted a postdoctoral fellowship from the National Research Council, which was carried out at the NIST Center for Neutron Research (USA). In 2012, she took a scientific position at the Molecular Foundry at Lawrence Berkeley National Laboratory, and in 2015 she accepted an Assistant Professorship in the Institute of Chemical Sciences and Engineering at École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. Her research is focused on the synthesis and characterization of novel porous adsorbents, namely metal-organic frameworks, that are of interest in a number of host-guest applications. The ultimate goal of her research is to contribute knowledge towards solving globally relevant problems, like reducing energy consumption, cutting CO2 emissions, and water purification. Her desire is to help train a new generation of researchers that have the knowledge and scientific skill set necessary to become future frontrunners in energy-related research.
Dimensional reduction of 3D semiconducting crystal lattices has brought tremendous input into the discovery of new electronic and optical properties in the resulting nanostructures. Functionality in these last ones can be fundamentally different from the bulk and can be designed by controlling shape, size and interactions at the nanoscale. The library of synthetic methods that have been developed in parallel to produce them, provides today access even to atomically precise structures. At the same time, advanced manufacturing and processing have paved the way towards their integration into macroscale architectures like thin films and porous scaffolds, to prospect use in real applications such as energy harvesting/storage and optoelectronics. This symposium will bring together chemists, physicists and materials scientists active in the synthesis, processing, study of structure-property relationships and application in energy and optoelectronic research of low-dimensional semiconductors, spanning from the 0D realm (with the fascinating quantum/carbon dots and different types of nanocrystals) up to the 2D one (with the wide range of 2D materials produced from both top-down and bottom-up approaches).
- From 0D to 2D materials - synthesis, production and processing
- Modelling and determination of electronic and optical properties in 0D and 2D materials
- 0D and 2D materials for energy conversion and storage
- Hybrid 0D-2D materials for emerging applications – synthesis, physical chemistry, photophysics, processing and device integration
- Optoelectronic devices based on 0D and 2D materials
Dr. Ji Ma is the research group leader in the Chair of Molecular Functional Materials at Faculty of Chemistry and Food Chemistry, Technische Universität Dresden. He received his Master's degree in Polymer Chemistry in July 2015 from Fudan University, China. In August 2015, he joined the group of Prof. Xinliang Feng in Technische Universität Dresden as a PhD student, and received his doctorate degree in Synthetic Chemistry in November 2019. After that, he was appointed as a research group leader for the synthetic carbon subgroup in the Chair.
Bio Professional Preparation M.S. in Chemistry, with Honours, University of Bari, Italy, 1996 Ph.D. in Chemistry, University of Bari, Italy, 2001 Research interests Prof. L. Manna is an expert of synthesis and assembly of colloidal nanocrystals. His research interests span the advanced synthesis, structural characterization and assembly of inorganic nanostructures for applications in energy-related areas, in photonics, electronics and biology.
Hernán Míguez (born in Buenos Aires, Argentina, 1971) is Research Professor of the Spanish Research Council (CSIC) in the Institute of Materials Science of Seville. He studied Physics in the Universidad Autónoma de Madrid and did his PhD in the Institute of Materials Science of Madrid. After a postdoctoral stay at the University of Toronto in the group of Prof. Ozin, he returned to Spain and joined the CSIC in 2004. He leads the group of Multifunctional Optical Materials, whose activities are devoted to the development, characterization and modeling of new photonic architectures for applications in different fields, among them solar energy conversion and light emission. He has received an ERC starting grant (2012, Consolidator Modality) and the “Real Sociedad Española de Física-Fundación BBVA 2017” Prize in the modality of “Physics, Innovation and Technology”.
Prof. R. Robinson received his PhD in Applied Physics from Columbia University. After his PhD, Prof. Robinson was awarded a postdoctoral fellowship at University of California, Berkeley/LBNL in the research group of Paul Alivisatos. There, he worked on nanoparticle synthesis, chemical transformations of nanoparticles, and advanced property characterizations of nanoparticles. In 2008 Richard began a faculty position at Cornell University in the Materials Science Department, and is currently an associate professor. His primary research interests are: (I) Synthesis and chemical transformations in nanocrystals, (II) Nanocrystals in energy applications, and (III) Synchrotron x-ray characterization of nanomaterials.
therobinsongroup.org/
Andrea Toma has a long-standing experience in the fabrication and characterization of 3D nanostructures, facing cutting-edge issues in light-matter interaction and nanophotonics. He is staff scientist at the Italian Institute of Technology where he coordinates the Clean Room Facility and the ERC CoG grant "REPLY - Reshaping Photocatalysis via Light-Matter Hybridization in Plasmonic Nanocavities".
Andrea Toma is Adjunct Professor at the University of Genova and, since 2012, member of the Proposal Study Panel at the Lawrence Berkeley National Laboratory. He published more than 100 scientific papers in some of the most impacting Journals of the field, with an h-index of 41. In 2017 he has been awarded with a Visiting Scientist - Full Professorship position by the Chinese Academy of Sciences (under the President's International Fellowship Initiative) with both research and training responsibilities.
He works as referee for many international journals and international funding agencies, serving as program committee member/organizer of conferences on light-matter interaction and nanofabrication.
“Organics strike back”: After a long halt between 2012 and 2015 on efficiencies around 12%, organic solar cells (OSC) have now transitioned to a stage where efficiencies over 18% are being reported. The emergence of a family of materials - the non-fullerene acceptors (NFAs) with small energetic offsets with specific electron donors - is mainly responsible for the remarkable improvement. With the significant milestone of 20% now in sight and an optimistic value of 25% predicted, understanding charge dynamics in these systems is now of great importance . This symposium endeavours to gather leading experts from around the world aiming at critical discussions on hot topics related to charge-and-thermo-dynamics of organic solar cells, in particular those based on non-fullerene acceptors.
- Voltage loss mechanisms in NFA solar cells.
- New thermodynamic efficiency limits.
- Interplay between excitons, CT states and free charges in the low offset systems.
- Charge generation in non-fullerene solar cells.
- Role of kinetics and energetics in charge generation in non-fullerene solar cells.
- Trap induced recombination.
- Charge transport and recombination.
- Thick junctions enabled by reduced recombination.
- Interplay between nano-morphology and charge dynamics.
- Doping engineering in OSCs.
- Role of energetic disorder and tail states.
- New methodologies to investigate charge dynamics in OSCs.
James Durrant is Professor of Photochemistry in the Department of Chemistry, Imperial College London and Ser Cymru Solar Professor, University of Swansea. His research addresses the photochemistry of new materials for solar energy conversion targeting both solar cells (photovoltaics) and solar to fuel (i.e.: artificial photosynthesis. It is based around employing transient optical and optoelectronic techniques to address materials function, and thereby elucidate design principles which enable technological development. His group is currently addressing the development and functional characterisation of organic and perovskite solar cells and photoelectrodes for solar fuel generation. More widely, he leads Imperial's Centre for Processable Electronics, founded the UK�s Solar Fuels Network and led the Welsh government funded S�r Cymru Solar initiative. He has published over 500 research papers and 5 patents, and was recently elected a Fellow of the Royal Society
Ivan Kassal is an Associate Professor in the School of Chemistry at the University of Sydney. He graduated from Stanford University in 2006 and completed his PhD in Chemical Physics at Harvard University in 2010. He is a theorist working at the intersection of quantum science, chemistry, biophysics, and materials science. He pioneered some of the first applications of quantum computers to chemistry, showing they could dramatically accelerate difficult chemical calculations. He has also unravelled ways that photosynthetic organisms use quantum effects to improve their light harvesting, and is using those lessons to better understand next-generation materials, especially organic solar cells. He is a recipient of a DECRA fellowship, a Westpac fellowship, and the Le Fèvre Medal of the Australian Academy of Science for “outstanding basic research in chemistry”.
Prof. Dieter Neher studied physics at the University of Mainz. In 1990 he gained his PhD with Prof. G. Wegner. From 1990-1992 he was a research associate at the Optical Sciences Centre, Tucson, Arizona and at the Centre for Research in Electrooptics and Lasers, Orlando, Florida with Prof. G. Stegeman. 1992 he joined again Prof. G. Wegner at the MPI-P, heading the group Electrooptical Phenomena in Polymers. Following his habilitation in November 1998, he became Professor of Soft Matter Physics at the Institute for Physics and Astronomy at the University of Potsdam. Current research interests are electrical, optical and optoelectronic processes in conjugated materials.
This symposium invites contributions on new approaches to enhance the performance and stability of organic solar cells (OPV), as well as highlight the novel areas of application. It will consider challenges in synthesis of novel types of non-fullerene acceptor and matching donor molecules to afford simultaneous high efficiency, long lifetime and low environmental impact at a low cost of sysnthesis. At the same time it will provide new insights on the advanced machine learning concepts for optimization and upscaling of these devices, and highlight arising new OPV application areas, such as indoor light cells, agrivoltaics, integrated IOT solutions and more.
- Development of novel highly efficient organic solar cells molecules
- Stability of organic solar cells
- Upscaling of organic solar cell devices
- Novel application areas for organic solar cells
Vida Engmann obtained her Dr. rer. nat in 2014 from the Ilmenau University of Technology under the supervision of Prof. Dr. Gerhard Gobsch. In 2014 she joined the OPV group at Mads Clausen Institute of University of Southern Denmark as a postdoctoral researcher. In 2017 she was appointed assistant professor and in 2020 as associate professor, with the focus on degradation and additive-assisted stabilization of organic solar cells. Her international research stays include Uppsala University, University of Colorado Boulder / NREL, and Russian Academy of Sciences Chernogolovka. She authored numerous publications in high-impact journals such as Nature Energy, Energy & Environmental Science, Advanced Energy Materials, ACS Applied Materials & Interfaces, and one chapter in a scientific book, as well as edited the World Scientific Reference of Hybrid Materials - Vol. 2. For her research, she has been awarded the postdoctoral fellowship by the Independent Research Fund Denmark (IRFD), EU COST action MP1307, I-CAM fellowship, as well as the Thuringian State Graduate stipend, and she is currently co-PI on a Villum Foundation research project on mechanical stabilization of organic solar cells and the PI on the IRFD Research Project 1 on nanoparticle based organic solar cells. In 2020 she was awarded the Carlsberg Young Researcher Grant. In 2019 she received the Danish UNESCO-L'Oréal For Women in Science award and in 2020 the UNESCO L'Oréal International Rising Talent award.
Morten Madsen, Professor wsr at the University of Southern Denmark, SDU NanoSYD.
My field of expertise is thin-film growth, integration and devices for energy conversion and storage applications. In 2010-2011, I worked with high performance transistors from III-V nanoscale membranes at the Javey research lab, UC Berkeley, California. In 2011, I established the OPV group at SDU NanoSYD, where we work on improving the performance and stability of organic and hybrid solar cells, including thin film synthesis, metal oxide interlayers and interfaces, organic and hybrid active layers as well as film and device degradation. Since 2016, we also have a focus on device up-scaling through Roll-to-Roll (R2R) printing technology at the SDU R2R facility. Vist out site for more details:
https://www.sdu.dk/en/om_sdu/institutter_centre/c_nanosyd/forskningsomrader/organic+solar+cells
Throughout his career, Jens has worked with successfully designing and developing complex experiments for in situ structural studies in the fields of polymer solar cells and functional organic materials, catalysis and hydrogen storage using synchrotron radiation, in fact since the beginning of his PhD studies. From 2001-2010 his focus was mainly on synchrotron radiation scattering techniques and their use for in situ experiments and for determining structure-property relations in functional thin films.
In 2011, Jens shifted his focus towards synchrotron-based 3D imaging of energy materials, particularly the very demanding case of polymer solar cells, where the low-contrast soft matter constitute a specific challenge. Through a dedicated effort of synchrotron experiments this led from 3D ptychographic imaging of roll to roll coated polymer solar cell active layers to 3D imaging of a complete polymer tandem solar cell. The scope of applications is all the time broadening, and Jens is now developing new tools for 3D imaging and organizing training and teaching in these.
In the same period, he developed a new setup for fast mapping of nano-structure, crystallinity and texture in R2R coated thin-films, which is still being improved and extended. Most recently, he has taken up research in ultrafast X-ray scattering and spectroscopy applied to solar energy materials, using X-ray free electron lasers.
In parallel with the studies of nano-structure in energy materials, Jens is running a small group that works with upscaling of organic solar cells, in order to maintain research into the entire development of this technology, from the fundamental understanding of charge generation and transport, over mesoscale structure formation to the performance of the final devices.
Christoph J. Brabec is holding the chair “materials for electronics and energy technology (i-MEET)” at the materials science of the Friedrich Alexander University Erlangen-Nürnberg. Further, he is the scientific director of the Erlangen division of the Bavarian research institute for renewable energy (ZAE Bayern, Erlangen).
He received his PhD (1995) in physical chemistry from Linz university, joined the group of Prof Alan Heeger at UCSB for a sabbatical, and continued to work on all aspects of organic semiconductor spectroscopy as assistant professor at Linz university with Prof. Serdar Sariciftci. He joined the SIEMENS research labs as project leader for organic semiconductor devices in 2001 and joined Konarka in 2004, where he was holding the position of the CTO before joining university.
He is author and co-author of more than 150 papers and 200 patents and patent applications, and finished his habilitation in physical chemistry in 2003.
René Janssen is university professor at the Eindhoven University of Technology (TU/e). He received his Ph.D. in 1987 from the TU/e for a thesis on electron spin resonance and quantum chemical calculations of organic radicals in single crystals. He was lecturer at the TU/e since 1984, and a senior lecturer in physical organic chemistry since 1991. In 1993 and 1994 he joined the group of Professor Alan J. Heeger (Nobel laureate in 2000) at the University of California Santa Barbara as associate researcher to work on the photophysical properties of conjugated polymers. Presently the research of his group focuses on functional conjugated molecules and macromolecules as well as hybrid semiconductor materials that may find application in advanced technological applications. The synthesis of new materials is combined with time-resolved optical spectroscopy, electrochemistry, morphological characterization and the preparation of prototype devices to accomplish these goals. René Janssen has co-authored more than 600 scientific papers. He is co-recipient of the René Descartes Prize from the European Commission for outstanding collaborative research, and received the Research Prize of The Royal Institute of Engineers and in The Netherlands for his work. In 2015 René Janssen was awarded with the Spinoza Prize of The Dutch Research Council.
Professor of Materials Physics at Karlstad University, Sweden, since 2011. Research interests: morphology of conjugated polymer thin films, photodegradation of OPV materials, energy level allignment in organic and perovskite multilayer structures. Employed at Karlstad university since 2000. Previously Research Scientist at Cambridge Display Technology in Cambridge,UK, and Research Assistant at University of Cambridge. Post-doc at EPFL Lausanne (1996-98) and TU Delft (1995-1996). PhD degree from the Weizmann Institute of Science in Rehovot, Israel.
Jenny Nelson is a Professor of Physics at Imperial College London, where she has researched novel varieties of material for use in solar cells since 1989. Her current research is focussed on understanding the properties of molecular semiconductor materials and their application to organic solar cells. This work combines fundamental electrical, spectroscopic and structural studies of molecular electronic materials with numerical modelling and device studies, with the aim of optimising the performance of plastic solar cells. She has published around 200 articles in peer reviewed journals, several book chapters and a book on the physics of solar cells.
Thuc-Quyen Nguyen is a professor in the Center for Polymers and Organic Solids and the Chemistry & Biochemistry Department at University of California, Santa Barbara (UCSB). She received her Ph.D. degree in physical chemistry from the University of California, Los Angeles, in 2001 under the supervision of Professor Benjamin Schwartz. Her thesis focused on photophysics of conducting polymers. She was a research associate in the Department of Chemistry and the Nanocenter at Columbia University working with Professors Louis Brus and Colin Nuckolls on molecular self-assembly, nanoscale characterization and molecular electronics. She also spent time at IBM Research Center at T. J. Watson (Yorktown Heights, NY) working with Richard Martel and Phaedon Avouris. Her current research interests are structure-function-property relationships in organic semiconductors, sustainable semiconductors, doping in organic semiconductors, interfaces in optoelectronic devices, bioelectronics, and device physics of OPVs, photodetectors, and electrochemical transistors. Recognition for her research includes 2005 Office of Naval Research Young Investigator Award, 2006 NSF CAREER Award, 2007 Harold Plous Award, 2008 Camille Dreyfus Teacher Scholar Award, the 2009 Alfred Sloan Research Fellows, 2010 National Science Foundation American Competitiveness and Innovation Fellows, 2015 Alexander von Humboldt Senior Research Award, 2016 Fellow of the Royal Society of Chemistry, 2015-2019 World’s Most InfluentialScientific Minds; Top 1% Highly Cited Researchers in Materials Science by Thomson Reuters and Clarivate Analytics, 2019 Fellow of the American Association for the Advancement of Science (AAAS), 2023 Wilhelm Exner Medal from Austria, 2023 Fellow of the US National Academy of Inventors, 2023 de Gennes Prize in Materials Chemistry from the Royal Society of Chemistry, 2023 Elected Member of the US National Academy of Engineering, 2024 Fellow of the European Academy of Sciences, and 2025 ACS Henry H. Storch Award in Energy Chemistry.
This symposium invites contributions on investigations of the properties and dynamics of excitons, charges and spins involved in the function of organic electronic devices such as solar cells, light emitting diodes, field-effect transistors and spintronic devices. It will especially focus on the use of state-of-the-art spectroscopic techniques for the characterisation of the fundamental photophysical processes underlying the function of these devices. An understanding of energy transfer, charge separation, spin and charge transport, charge recombination and other mechanisms at the nanoscale is crucial for further developments and can be obtained with advanced characterisation techniques, including optical, vibrational and opto-electronic spectroscopies, magnetic resonance spectroscopies, photoemission spectroscopy, and X-ray scattering techniques, combined with theoretical modelling and simulation. The new insights gained will lead to the next step changes in performance of organic electronics as well as new applications.
- Photophysical processes in materials for organic electronics
- Spectroscopic characterisation of organic electronic materials
- Modelling and simulations of organic semiconductors
- Charge separation, recombination and transfer in organic photovoltaics
- Exciton and spin physics in materials for up/down conversion, singlet fission, TADF, organic LEDs
- Spin and charge transport in organic semiconductors
- Doping mechanisms for organic semiconductors
Radicals have unpaired electrons, leading to unusual physics that could be utilised in next-generation organic electronics. My research explores novel functionality that arises from the combination of luminescence, magnetism and spin properties in these materials.
Prof. Adachi obtained his doctorate in Materials Science and Technology in 1991 from Kyushu University. Before returning to Kyushu University as a professor of the Center for Future Chemistry and the Department of Applied Chemistry, he held positions as a research chemist and physicist in the Chemical Products R&D Center at Ricoh Co., a research associate in the Department of Functional Polymer Science at Shinshu University, research staff in the Department of Electrical Engineering at Princeton University, and an associate professor and professor at Chitose Institute of Science and Technology. He became a distinguished professor at Kyushu University in 2010, and his current posts also include director of Kyushu University’s Center for Organic Photonics and Electronics Research (OPERA) since 2010 and program coordinator of Kyushu University’s Education Center for Global Leaders in Molecular Systems for Devices and director of the Fukuoka i3 Center for Organic Photonics and Electronics Research since 2013.
Thuc-Quyen Nguyen is a professor in the Center for Polymers and Organic Solids and the Chemistry & Biochemistry Department at University of California, Santa Barbara (UCSB). She received her Ph.D. degree in physical chemistry from the University of California, Los Angeles, in 2001 under the supervision of Professor Benjamin Schwartz. Her thesis focused on photophysics of conducting polymers. She was a research associate in the Department of Chemistry and the Nanocenter at Columbia University working with Professors Louis Brus and Colin Nuckolls on molecular self-assembly, nanoscale characterization and molecular electronics. She also spent time at IBM Research Center at T. J. Watson (Yorktown Heights, NY) working with Richard Martel and Phaedon Avouris. Her current research interests are structure-function-property relationships in organic semiconductors, sustainable semiconductors, doping in organic semiconductors, interfaces in optoelectronic devices, bioelectronics, and device physics of OPVs, photodetectors, and electrochemical transistors. Recognition for her research includes 2005 Office of Naval Research Young Investigator Award, 2006 NSF CAREER Award, 2007 Harold Plous Award, 2008 Camille Dreyfus Teacher Scholar Award, the 2009 Alfred Sloan Research Fellows, 2010 National Science Foundation American Competitiveness and Innovation Fellows, 2015 Alexander von Humboldt Senior Research Award, 2016 Fellow of the Royal Society of Chemistry, 2015-2019 World’s Most InfluentialScientific Minds; Top 1% Highly Cited Researchers in Materials Science by Thomson Reuters and Clarivate Analytics, 2019 Fellow of the American Association for the Advancement of Science (AAAS), 2023 Wilhelm Exner Medal from Austria, 2023 Fellow of the US National Academy of Inventors, 2023 de Gennes Prize in Materials Chemistry from the Royal Society of Chemistry, 2023 Elected Member of the US National Academy of Engineering, 2024 Fellow of the European Academy of Sciences, and 2025 ACS Henry H. Storch Award in Energy Chemistry.
Jess is an Imperial College Research Fellow investigating spin selective charge transport through chiral systems in the Department of Materials. She currently works in SPIN-Lab at Imperial, which is led by Professor Sandrine Heutz. She previously worked as a postdoctoral researcher in the Fuchter group at Imperial College London, where she optimised these chiral systems such that can absorb/emit circularly polarised (CP) light for CP OLEDs and OPDs. For her PhD Jess concentrated on organic photovoltaics and the development of advanced characterisation techniques to better understand molecular packing under the supervision of Dr Ji-Seon Kim. Outside of the lab, Jess is involved with several science communication and outreach initiatives. She is committed to improving diversity in science, both online and offline, and since the start of 2018 has written the Wikipedia biographies of women and people of colour scientists every single day.
Michael R. Wasielewski is currently the Clare Hamilton Hall Professor of Chemistry at Northwestern University, Executive Director of the Institute for Sustainability and Energy at Northwestern, and Director of the Center for Molecular Quantum Transduction, a United States Department of Energy Energy Frontier Research Center. His research has resulted in over 730 publications and focuses on light-driven processes in molecules and materials, artificial photosynthesis, molecular electronics, quantum information science, ultrafast optical spectroscopy, and time-resolved electron paramagnetic resonance spectroscopy. His honors and awards include membership in the National Academy of Sciences and the American Academy of Arts and Sciences; the Bruker Prize in Electron Paramagnetic Spectroscopy (EPR); the Josef Michl American Chemical Society Award in Photochemistry; the International EPR Society Silver Medal in Chemistry; the Royal Society of Chemistry Physical Organic Chemistry Award; the Chemical Pioneer Award of the American Institute of Chemists; the Royal Society of Chemistry Environment Prize; the Humboldt Research Award; the Arthur C. Cope Scholar Award of the American Chemical Society; the Porter Medal for Photochemistry; and the James Flack Norris Award in Physical Organic Chemistry of the American Chemical Society. He received his B.S., M.S., and Ph.D. degrees from the University of Chicago.
Organic bioelectronic devices operation in in-vitro or in-vivo systems results in direct interface of the electronic active materials with the biological milieu. In order to effectively translate or stimulate biological events, many devices rely on mixed ionic and electronic transport. Due to the coupled nature of electronic and ionic conduction in organic materials, complex transport phenomena take place including electrostatic and faradaic processes. This symposium aims at bringing together researchers working on fundamental aspects of organic bioelectronic devices. The symposium focuses on gaining insight on device physics and how complex biological phenomena can be translated or stimulated via electronics. Better understanding of fundamental aspects of bioelectronic devices will lead to next generation devices with increased performance and capabilities.
- Organic transistors and electrodes for sensing and stimulation
- Drug delivery devices
- Photo stimulation devices
- Biochemical sensors
- Wearable devices
- Biotic/abiotic interface
Eleni Stavrinidou is an Associate Professor and leader of the Electronic Plants group at Linköping University. She received a PhD in Microelectronics from EMSE (France) in 2014. She then did her postdoctoral training at Linköping University (Sweden) during which she was awarded a Marie Curie fellowship. In 2017 Eleni Stavrinidou became Assistant Professor in Organic Electronics at Linköping University and established the Electronic Plants group. She received several grants including a Swedish Research Council Starting Grant and she is the Coordinator of the HyPhOE-FET-OPEN project. In 2019 she received the L’ORÉAL-UNESCO For Women in Science prize in Sweden. In 2020 she became Associate Professor and Docent in Applied Physics. The same year she was awarded the Future Research Leaders grant of the Swedish Foundation for Strategic Research. Her research interests focus on organic electronics for plant monitoring and optimization, energy applications and bio-hybrid systems.
Annalisa Bonfiglio graduated in Physics in 1991 at the University of Genova, Italy and got the PhD in Bioengineering in 1996 at the Politechnical School in Milan.
She is currently Full Professor of Electronic Bioengineering at the Scuola Universitaria Superiore IUSS in Pavia, Italy.
She authored more than 200 papers on international journals, conference proceedings, book chapters. She also holds 12 patents. Her research activity is focussed on innovative materials (in particular organic semiconductors) and devices for wearable electronics and biomonitoring.
From 1996 to 2023 she was with the University of Cagliari where, from 2015 to 2017 she served as Vice-Rector for Innovation and Territorial Strategies. From 2014 to 2017 she was in the Board of Directors of CRS4 (Center for Advanced Studies, Research and Development in Sardinia). From 2017 to 2020, she served as President at CRS4.
Magnus Berggren received his MSc in Physics in 1991 and graduated as PhD (Thesis: Organic Light Emitting Diodes) in Applied Physics in 1996, both degrees from Linköping University. He then joined Bell Laboratories in Murray Hill, NJ in the USA, for a one-year post doc period focusing on the development of organic lasers and novel optical resonator structures.
In 1997 he teamed up with Opticom ASA, from Norway, and former colleagues of Linköping University to establish the company Thin Film Electronics AB (ThinFilm). From 1997 to 1999 he served Thin Film as its founding managing director and initiated the development of printed electronic memories based on ferroelectric polymers.
After this, he returned to Linköping University and also to a part time manager at RISE Acreo. In 1999, he initiated the research and development of paper electronics, in part supported by several paper- and packaging companies. Since 2002, he is the professor in Organic Electronics at Linköping University and the director of the Laboratory of Organic Electronics, today including close to 90 researchers.
Magnus Berggren is one of the pioneers of the Organic Bioelectronics and Electronic Plants research areas and currently he is the acting director of the Strategic Research Area (SFO) of Advanced Functional Materials (AFM) at LiU. In 2012 Magnus Berggren was elected member of the Royal Swedish Academy of Sciences and in 2014 he received the Marcus Wallenberg Price. He is also the co-founder of 7 companies: ThinFilm, Invisense, DP Patterning, Consensum Prodcution, OBOE IPR, OBOE Players and Ligna Energy.
Susan Daniel is the Fred H. Rhodes Professor of Chemical Engineering and the William C. Hooey Director of the Robert Frederick Smith School of Chemical and Biomolecular Engineering at Cornell University. Her research team strives to understand phenomena at biological interfaces and chemically patterned surfaces that interact with soft matter – liquids; polymers; and biological materials, like cells, viruses, proteins, and lipids. Her team pioneered “biomembrane chips” to conduct cell-free, biophysical studies of mammalian, bacterial, and plant cell membranes, and recently merged this technology with organic electronic devices for expanded sensing capabilities.
Dion Khodagholy is an assistant professor in the Department of Electrical Engineering at Columbia University in New York City.
He received his Master’s degree from the University of Birmingham (UK) in Electronics and Telecommunication Engineering. This was followed by a second Master’s degree in Microelectronics at the Ecole des Mines. He attained his PhD in Microelectronics at the Department of Bioelectronics (BEL) of the Ecole des Mines (France). His postdoctoral research at New York University, Langone Medical Center was focused on large-scale cortical acquisition and analysis.
His research explores the interface of electronics and the brain in the context of both applied and discovery sciences, with the ultimate goal of new innovations in device engineering and neuroscience methods to improve diagnosis and treatment of neuropsychiatric disease.
Thuc-Quyen Nguyen is a professor in the Center for Polymers and Organic Solids and the Chemistry & Biochemistry Department at University of California, Santa Barbara (UCSB). She received her Ph.D. degree in physical chemistry from the University of California, Los Angeles, in 2001 under the supervision of Professor Benjamin Schwartz. Her thesis focused on photophysics of conducting polymers. She was a research associate in the Department of Chemistry and the Nanocenter at Columbia University working with Professors Louis Brus and Colin Nuckolls on molecular self-assembly, nanoscale characterization and molecular electronics. She also spent time at IBM Research Center at T. J. Watson (Yorktown Heights, NY) working with Richard Martel and Phaedon Avouris. Her current research interests are structure-function-property relationships in organic semiconductors, sustainable semiconductors, doping in organic semiconductors, interfaces in optoelectronic devices, bioelectronics, and device physics of OPVs, photodetectors, and electrochemical transistors. Recognition for her research includes 2005 Office of Naval Research Young Investigator Award, 2006 NSF CAREER Award, 2007 Harold Plous Award, 2008 Camille Dreyfus Teacher Scholar Award, the 2009 Alfred Sloan Research Fellows, 2010 National Science Foundation American Competitiveness and Innovation Fellows, 2015 Alexander von Humboldt Senior Research Award, 2016 Fellow of the Royal Society of Chemistry, 2015-2019 World’s Most InfluentialScientific Minds; Top 1% Highly Cited Researchers in Materials Science by Thomson Reuters and Clarivate Analytics, 2019 Fellow of the American Association for the Advancement of Science (AAAS), 2023 Wilhelm Exner Medal from Austria, 2023 Fellow of the US National Academy of Inventors, 2023 de Gennes Prize in Materials Chemistry from the Royal Society of Chemistry, 2023 Elected Member of the US National Academy of Engineering, 2024 Fellow of the European Academy of Sciences, and 2025 ACS Henry H. Storch Award in Energy Chemistry.
Alberto Salleo is currently an Associate Professor of Materials Science at Stanford University. Alberto Salleo graduated as a Fulbright Fellow with a PhD in Materials Science from UC Berkeley in 2001 working at Lawrence Livermore National Laboratory on laser-induced optical breakdown in fused silica. From 2001 to 2005 Salleo was first post-doctoral research fellow and successively member of research staff at Xerox Palo Alto Research Center, where he worked with Bob Street on device and materials physics of disordered and polymeric semiconductors. In 2005 Salleo joined the Materials Science and Engineering Department at Stanford as an Assistant Professor. While at Stanford, Salleo won the NSF Career Award, the 3M Untenured Faculty Award, the SPIE Early Career Award and the Tau Beta Pi Excellence in Undergraduate Teaching Award. Salleo is an Associate Editor of the Journal of Electronic Materials and a Principal Editor of MRS Communications.
Achilleas Savva is an Assistant Professor in the Bioelectronics group at Delft University of Technology, in The Netherlands. He received his B.Sc. and M.Sc. in chemical engineering from Aristotle University of Thessaloniki in Greece, in 2010. He then obtained his PhD in Materials Science and Engineering from Cyprus University of Technology in 2014. His PhD research was focused on organic optoelectronics for renewable energy. In 2017 he joined the group of Professor Sahika Inal in KAUST, Saudi Arabia, as a postdoc, and expanded his research on organic bioelectronics. In 2019, he joined the group of Professor Róisín Owens at the University of Cambridge where he secured the Marie Skłodowska-Curie Postdoctoral Fellowship. He developed several novel organic bioelectronic devices such as biosensors, light sensitive devices for photo-stimulation of neurons, 3D in vitro human stem cell models, among others. Achilleas was born in Limassol, Cyprus.
Luisa Torsi received her Laurea degree in Physics from the University of Bari in 1989 and a Ph.D. in Chemical Sciences from the same institution in 1993. She was a post-doctoral fellow at Bell Labs from 1994 to 1996. In 2005 and 2006 she was invited professor at the University of Anger and Paris 7, respectively. Since 2005 she is a full professor of chemistry at the University of Bari and since 2017 she is an adjunct professor at the Abo Academy University in Finland.
In 2010 she has been awarded the Heinrich Emanuel Merck prize for analytical sciences, this marking the first time the award is given to a woman. Prof. Luisa Torsi is also the winner of the Wilhelm Exner Medal 2021 (https://www.wilhelmexner.org/en/). The medal has been awarded since 1921 by the Austrian Association of Industries to celebrate excellence in research and science and as many as 23 Nobel prize winners have been awarded too. She is also the recipient, at the British Library in London, of the 2015 main overall platinum prize of the Global-Women Inventors and Innovators Network. The IUPAC - International Union of Pure and Applied Chemistry awarded her with the 2019 Distinguished Women in Chemistry or Chemical Engineering. The analytical chemistry division of the European Chemical Society (EuChemS) conferred her the Robert Kellner Lecturer 2019.
Since 2020 she has been appointed National Representative for the Marie Skłodowska-Curie Action of Horizon Europe by the Italian Minister for Education and Research. She is also past president of the European Material Research Society being the first women to serve on this role. She has been also elected 2017 Fellow of the Material Research Society, for pioneering work in the field of organic (bio) electronic sensors and their use for point-of-care testing.
Awarded research funding for over 26 million € in thirteen years, comprises several European contracts as well as national and regional projects. She is coordinating the “Single molecule bio-electronic smart system array for clinical testing – SiMBiT” a H2020-ICT-2018-2020 research and innovation action financed with over 3 M€. The PRIN 17 national project “ACTUAL: At the forefront of Analytical ChemisTry: disrUptive detection technoLogies to improve food safety (2017RHX2E4)” is also coordinated by Torsi. She has also coordinated a “European Industrial Doctorate” Marie Curie project in collaboration with Merck and was principal investigator in a Marie Curie ITN. She has also coordinated a Marie Curie ITN European network, several national PRIN projects, and was principal investigator in an ICT STREP proposal. She has also been the scientific coordinator of a Structural Reinforcement PON Project awarded to UNIBA for 2012-2014 and is engaged with a number of other Structural Reinforcement PON projects.
Torsi has authored almost 230 ISI papers, including papers published in Science, Nature Materials, Nature Communications, PNAS, Advanced Materials, Scientific Reports, and is co-inventor of several international awarded patents. Her works gathered almost 13.500 Google scholar citations resulting in an h-index of 55. She has given more than 170 invited lectures, including almost 50 plenary and keynotes contributions to international conferences.
Prof. Torsi is committed to the role of model for younger women scientists. She has been giving a number of talks on this topic such as a TEDx talk. Prof. Torsi is one of the 100Experts (https://100esperte.it) a project led by Fondazione Bracco comprising an online databank with the names and CVs of female experts in STEM, a sector historically underrepresented by women but a strategic one for the economic and social development of Italy. In a recent campaign to foster the idea of gender equality in Science among children, prof. Torsi was featured in a story of TOPOLINO (Italian comic digest-size series of Disney comics), as “Louise Torduck”, a successful female scientist of the Calisota valley.