S9 Advanced PV Technologies and Concepts with New Functionalities
 
Mon Oct 22 2018
Plenary Session 2
Chair: Kevin Sivula
09:00 - 09:30
2-K1
Hwang, Yun Jeong
Seoul National University
Electrochemical Conversion of CO2 toward Valuable Chemicals for Solar-to-Chemical Conversion Application
Yun Jeong Hwang
Seoul National University, KR
Authors
Yun Jeong Hwang a, Byoun Koun Min a, Hyeong-Suk Oh a
Affiliations
a, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, South Korea, Seoul, KR
Abstract

Electrochemical CO2 conversion can be coupled with a photovoltaic cell and provide a pathway to utilize solar energy for the chemical synthesis. Ideally, such artificial photosynthesis system want to use CO2 and H2O as feed-stock molecules to produce value-added chemicals such as fuels or raw chemicals. My research team reported a monolithic and stand-alone device composed of a photovoltaic cell module, an Au CO2 reduction, a cobalt oxide anode accomplishing over 4 % conversion efficiency for CO2 conversion to CO production. To improve the solar to chemical conversion efficiency and to increase the feasibility further, we have developed efficient electrocatalysts and replaced the photovoltaic cell with Si modules, achieving ~ 8% of solar-to-CO conversion efficiency.

In addition, in this talk, metal-based electrocatalysts interacting with p-block elements or surface mediated molecules will be discussed for selective CO or C2+ (i.e. ethylene) production from CO2 reduction. The experimental results and theoretical simulation with various different types of metal catalysts (Ag, Zn, and Cu) give insights how to suppress the hydrogen evolution reaction (HER) is crucial to achieve efficient CO2 reduction catalysts. Monodispersed Ag nanoparticles are suggested to have the special interaction between the surface Ag and the surface mediated molecules which can modify the local electronic structure favoring for the selective CO production (up to 95 % of Faradaic efficiency). In addition, in the case of selective ethylene production, special Cu nanostructure formed by in-situ electrochemical fragmentation is demonstrated to be effective for increasing C-C bond coupling (up to 73 % of Faradaic efficiency) and selective ethylene production (up to ~ 60 % of Faradaic efficiency). In-situ X-ray absorption spectroscopy (XAS) studies are performed to understand the catalyst activity. Our series of studies suggests the modification of the metal nanoparticle surface by oxygen atom or surface mediated molecules can be effective strategies to increase CO2 reduction reaction activity and stability.

Plenary session 1
Chair: Mischa Bonn
09:00 - 09:30
1-K1
Klimov, Victor
Los Alamos National Laboratory, US
Colloidal Quantum Dot Lasing: Historical Perspective and Recent Progress
Victor Klimov
Los Alamos National Laboratory, US, US

Victor I. Klimov is a Fellow of Los Alamos National Laboratory and the Director of the Center for Advanced Solar Photophysics of the U.S. Department of Energy. He received his M.S. (1978), Ph.D. (1981), and D.Sc. (1993) degrees from Moscow State University. He is a Fellow of both the American Physical Society and the Optical Society of America, and a recipient of the Humboldt Research Award. His research interests include optical spectroscopy of semiconductor and metal nanostructures, carrier relaxation processes, strongly confined multiexcitons, energy and charge transfer, and fundamental aspects of photovoltaics.

Authors
Victor Klimov a
Affiliations
a, Los Alamos National Laboratory, US, MS-J567, Los Alamos, NM 87545, US
Abstract

Chemically synthesized quantum dots (QDs) can potentially enable new classes of highly flexible, spectrally tunable lasers processible from solutions [1,2]. Despite a considerable progress over the past years, colloidal-QD lasing, however, is still at the laboratory stage and an important challenge - realization of lasing with electrical injection - is still unresolved. A major complication, which hinders the progress in this field, is fast nonradiative Auger recombination of gain-active multicarrier species such as trions (charged excitons) and biexcitons [3,4]. Recently, we explored several approaches for mitigating the problem of Auger decay by taking advantage of a new generation of core/multi-shell QDs with a radially graded composition that allow for considerable (nearly complete) suppression of Auger recombination by “softening” the electron and hole confinement potentials [5]. Using these specially engineered QDs, we have been able to realize optical gain with direct-current electrical pumping [6], which has been a long-standing goal in the field of colloidal nanostructures. Further, we apply these dots to practically demonstrated the viability of a “zero-threshold-optical-gain” concept using not neutral but negatively charged particles wherein the pre-existing electrons block either partially or completely ground-state absorption [7]. Such charged QDs are optical-gain-ready without excitation and, in principle, can exhibit lasing at vanishingly small pump levels. All of these exciting recent developments demonstrate a considerable promise of colloidal nanomaterials for implementing solution-processible optically and electrically pumped laser devices operating across a wide range of wavelengths and fabricated on virtually any substrate using a variety of optical-cavity designs.

[1] Klimov, V. I.et al., Optical gain and stimulated emission in nanocrystal quantum dots. Science290, 314 (2000).

[2] Klimov, V. I.et al., Single-exciton optical gain in semiconductor nanocrystals. Nature447, 441 (2007).

[3] Klimov, V. I. et al., Quantization of multiparticle Auger rates in semiconductor quantum dots. Science287, 1011 (2000).

[4] Robel, I., et al., Universal Size-Dependent Trend in Auger Recombination in Direct-Gap and Indirect-Gap Semiconductor Nanocrystals. Phys. Rev. Lett.102, 177404 (2009).

[5] Y.-S. Park, et al., Effect of Interfacial Alloying versus “Volume Scaling” on Auger Recombination in Compositionally Graded Semiconductor Quantum Dots. Nano Lett. 17, 5607 (2017).

[6] Lim, J., et al., Optical Gain in Colloidal Quantum Dots Achieved by Direct-Current Charge Injection. Nat. Mater.17, 42 (2018).

[7] Wu, K., et al., Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol.12, 1140 (2017).

PVCon S9.1
Chair: Joaquim Puigdollers
09:30 - 10:00
S9.1-I1
Martorell, Jordi
ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology
Novel Photonic Approaches to Enhance the Current or Voltage in Organic and Perovskite Solar Cells
Jordi Martorell
ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, ES
Authors
Jordi Martorell a
Affiliations
a, ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Avinguda Carl Friedrich Gauss, 3, Castelldefels, ES
Abstract

A considerable portion of photonics based research to enhance thin film solar cell performance considers the incorporation of plasmonic nano-particles to enhance light absorption and consequently increase the short circuit current. This approach, which has produced some interesting results, suffers from, essentially, two shortcomings: It has a positive effect in only one of the three photovoltaic parameters that determine the power conversion efficiency (PEC), while it may also have a negative impact on the electronic performance of the device. In the work we present, we will discuss several novel photonic approaches, having a minimal impact on electronic aspects of the solar cell not directly linked to light absorption or emission, capable of enhancing either the short circuit current or open circuit voltage for organic and perovskite solar cells.

In one configuration the standard ITO based transparent electrode is replaced by a 1-dimensional multilayer containing, at least, a TiO2 and a Ag layers [1]. This combination forms with the back metal electrode in thin film cells two coupled optical cavities with a resonance degeneracy which can be broken to produce a broadband light trapping. When applied to non-fullerene acceptor based single junction polymer cells we show that PECs close to 14% can be reached.

In a perovskite cell, by naturally transferring the random nano-texturing inherent of the perovskite layer to the back semiconductor/metal interface, where the contrast in the imaginary part of the refractive index is very large, we demonstrate that backscattering reduces light escape leading to an optimal light absorption bringing the PCE from 19.3% to 19.8%. Such path towards an ergodic behavior for maximum light absorption in perovskite cells may lead to the most effective light absorption in such cells [2].

To bring perovskite solar cells towards the Shockley-Queisser limit requires lowering the bandgap while simultaneously increasing the open circuit voltage. This, to some extent divergent objective, may demand the use of large cations to obtain a perovskite with larger lattice parameter together with a large crystal size to minimize interface non-radiative recombination. We successfully incorporated such large cations in larger than 1 μm perovskite crystals and fabricated cells that exhibited a largely increased fluorescence quantum yield and an open circuit voltage equivalent to 93% of the corresponding radiative limit one.

1 Quan Liu et al., Adv. Energy Mater. 7, Art. No. 1700356 (2017).

2 Hui Zhang et al., ACS Photonics (2018).

10:00 - 10:30
S9.1-O1
Chaturvedi, Neha
King Abdullah University of Science and Technology (KAUST) - Saudi Arabia
High Speed Coating Method for Fabricating Organic Solar Cells with PCE>10%
Neha Chaturvedi
King Abdullah University of Science and Technology (KAUST) - Saudi Arabia, SA
Authors
NEHA CHATURVEDI a, Hanlin Hu a, Nicola gasparini a, Derya Baran a, Aram Amassian a, Iain MuCulloch a
Affiliations
a, King Abdullah University of Science and Technology (KAUST) - Saudi Arabia, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, SA
Abstract

Organic semiconductors based on conjugated polymers and fullerene acceptors are a large class of materials that have been broadly explored for various applications that allow printed, flexible, stretchable, and large-area electronics like organic field-effect transistors (OFETs) and bulk-heterojunction organic photovoltaics (OPVs). The commercialization of large area photovoltaic devices relies on the capability of coating thick active layers in ambient condition without losing the efficiency. After surpassing the 13% threshold, OPVs becomes a promising approach in the field of thin film photovoltaic technology  but it is limited to thin film only. Till now the performance of scalable printed solar cells is quite low as compared to spin coated devices. In OPVs the photoactive layer, which consists of donor and acceptor materials plays an important role. Initially, the focus of OPV research was limited to fullerene based acceptor PC61BM and PC71BM ([6,6]-phenyl C61-/C71-butyric acid methyl ester). The fullerene based acceptors have some limitations to achieve high efficiency like low absorption coefficient and narrow visible absorption window limiting the light-to-current generation, thus inhibiting the improvement of device performance . From the last few years, non - fullerene acceptors (NFAs) have emerged as a new concept to overcome the limitations associated with fullerene based acceptors.

In this work, we used blend of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl) benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2 carboxylate-2-6-diyl)] (PBDTTT-EFT, or more commonly PCE10) : PC71BM (fullerene based) and PBDTTT-EFT: EH-IDTBR (NFA) as an active layer material. We used the wire-bar (WB) coating as well as spin coating (SC) to deposit the active layer of PCE10:PC71BM and PCE10: EH-IDTBR . Thicker active layer (>100 nm) devices based on WB coated shows good performance as compared to devices based on thicker active layer coated by SC. Comparison of the film properties as well as device performance has been carried out when we change the process form lab to scalable (SC to WB) technique. Solar cell (ITO/ZnO/PCE10:PC71BM/MoO3/Ag) based on WB coated PCE10:PC71BM results the PCE of 10.22 % comparable to the device based on SC PCE10:PC71BM with PCE of 10.10%. Devices based on NFAs (ITO/ZnO/PCE10: EH-IDTBR/MoO3/Ag) shows comparatively good performance with PCE of 10.77% for WB coated and PCE of 10.60% for SC devices. Reported WB coating technique approximating scalable fabrication methods and hold great promise for the development of low-cost and high-efficiency OSCs by high-throughput production.

10:30 - 11:00
Coffee Break
PVCon S9.2
Chair: Jordi Martorell
11:00 - 11:30
S9.2-I1
Eich, Manfred
Hamburg University of Technology
Nanomaterials for High Temperature Photonics
Manfred Eich
Hamburg University of Technology, DE
Authors
Manfred Eich a, f, P. Dyachenko a, S. Lang a, G. Shang a, Q.Y. Nguyen b, M. Chirumamilla a, K. Knopp a, G. Vaidhyanathan f, S. Molesky e, H. Renner a, A. Yu Petrov a, e, Z. Jacob d, M. Störmer f, T. Krekeler g, M. Ritter g, G. Schneider b
Affiliations
a, Hamburg University of Technology, Institute of Optical and Electronic Materials, Eißendorfer Straße, 38, Hamburg, DE
b, Hamburg University of Technology, Institute of Advanced Ceramics, Denickestraße, 15, Hamburg, DE
c, University of Alberta, Department of Electrical and Computer Engineering, 9107 - 116 Street, T6G 2V4, Edmonton, Canada
d, Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA
e, ITMO University, St. Petersburg, Russia, 49 Kronverkskii Avenue, St. Petersburg, RU
f, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Germany, Max-Planck-Straße, 1, Geesthacht, DE
g, Hamburg University of Technology, Electron Microscopy Unit, Eißendorfer Straße, 42, Hamburg, DE
Abstract

research results will be presented on nanomaterials as selective emitters and for near field radiative transfer for thermophotovoltaics and on tailored photonic glasses as non-iridescent structural colors.

of thermal radiation is a fundamental physical process defined by the dielectric properties of the thermally excited materials. Radiation into far field is described by Planck’s law and is limited by the blackbody emission. In near field, additional thermal energy transfer can be achieved due to evanescent fields, which are orders of magnitude larger than in far field. In the far field, emission, e.g. of long wavelengths below the energy of a semiconductor receiver band gap, can be suppressed in band edge emitters from nanostructured hyperbolic optical metamaterials as well as with resonantly coupled dielectric particle layers on top of plasmonic substrates. We demonstrate selective band edge emitters for thermophotovoltaic devices stable up to 1400°C based on W-HfO2 refractive metamaterials as well as ZrO2 based ceramic particles on tungsten. We further report on ceramic photonic structures as high-temperature compatible structural colors. A careful choice of the interplay between lattice and motif parameters of the photonic glass allows for structural colors with strong color saturation.

References

Shang, G.; Maiwald, L.; Renner, H.; Jalas, D.; Dosta, M.; Heinrich, S.; Petrov, A.; & Eich, M.; Photonic glass for high contrast structural color, Scientific Reports, 8, 7804 (2018)

Dyachenko, P.N.; Molesky, S.; Petrov, A.Y.; Stormer, M.; Krekeler, T.; Lang, S.; Ritter, M.; Jacob, Z.; and Eich, M.; Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions, Nature Communications, vol. 7, no. 11809, pp. 1–8, June 2016

Lang, S.; Sharma, G.; Molesky, S.; Kränzien, P.U.; Jalas, T.; Jacob, Z.; Petrov, A.Y.; and Eich, M.; Dynamic measurement of near-field radiative heat transfer, Scientific Reports, vol. 7, no. 1, p. 13916–13916, October 2017

Leib, E.W.; Pasquarelli, R.M.; do Rosario, J.J.; Dyachenko, P.N.; Doring, S.; Puchert, A.; Petrov, A.Y.; Eich, M.; Schneider, G.A.; Janssen, R.; Weller, H.; and Vossmeyer, T.; Yttria-stabilized zirconia microspheres: novel building blocks for high-temperature photonics, Journal of Materials Chemistry C, vol. 4, no. 1, pp. 62–74, January 2016

 

11:30 - 11:45
Abstract not programmed
11:45 - 12:00
S9.2-O1
Garín Escrivá, Moisés
Silicon Millefeuille: Multiplying Silicon Wafers for Ultrathin Photovoltaics.
Moisés Garín Escrivá
Authors
Moisés Garín a, Chen Jin a, Trifon Trifonov a, Ramón Alcubilla a
Affiliations
a, Universitat Politècnica de Catalunya, Calle Jordi Girona, 31, Barcelona, ES
Abstract

More than 30% of the production cost of commercial solar modules can be attributed to the cost of silicon and wafering. As a result, silicon wafers have reduced their thickness from 350 µm down to 180 µm. However, current sawing technology is reaching its inherent limits due to reduced yield and excessive kerf losses. Here we report on a method that can produce multiple free-standing ultra-thin (<20 µm) silicon layers from one silicon wafer and in a single technological process. This method, that we call “Silicon Millefeuille”, is based on the reorganization of close-packed arrays of pores under a high-temperature annealing in Ar:H ambient. The transformation process takes place in solid phase by surface diffusion, what results in the formation of high-quality monocrystalline thin layers that can later be peeled off into independent ultra-thin substrates. Pores are produced by electrochemical dissolution of n-type silicon in HF solution under back-side illumination. This allows to introduce an in-depth periodic modulation of the pore diameter that defines the number and thickness of the layers produced after the annealing. Furthermore, we show that the precise control of the initial in-depth pore profile has a profound impact on the pore reorganization dynamics, allowing to control the morphology of the thin layers obtained through annealing.

12:00 - 12:30
S9.2-I2
Pazos Outon, Luis
Electrical Engineering and Computer Sciences, University of California, Berkeley
Reaching 28% Efficiency in Thermo-Photovoltaics
Luis Pazos Outon
Electrical Engineering and Computer Sciences, University of California, Berkeley, US
Authors
Gregg Scranton a, b, Zunaid Omair a, b, Luis Pazos-Outón a, T. Patrick Xiao a, Vidya Ganapati c, Myles Steiner d, Per Peterson e, John Holzrichter f, Eli Yablonovitch a, b
Affiliations
a, Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720, EE. UU., Berkeley, US
b, Material Sciences Division, Lawrence Berkeley National Laboratory, US, Berkeley, California 94720, US
c, Swarthmore College, Swarthmore, Pennsylvania, USA
d, National Renewable Energy Laboratory, Golden, Colorado, 1617 Cole Boulevard, Golden, Colorado, 80401, US
e, Department of Nuclear Engineering, University of California at Berkeley
f, Physical Insight Associates, Berkeley, California, USA
Abstract

Photovoltaic (PV) cells are efficient heat engines, converting incident photon energy to electrical energy. In the case of solar PV, the cell receives radiation from the Sun – which can be approximated as a black body at 5500oC – and converts part of the received radiation to electricity. In an ideal solar PV cell, the maximum energy conversion efficiency is ~33.5%, the famous Shockley-Queisser limit. Entropic losses, thermalization, and unused below-bandgap photons are the main limits of solar PV.

If instead of relying on the Sun, a local black body is used as the source of photons, many of the limitations mentioned can be minimized. This idea, known as thermo-photovoltaics (TPV), has been known since 1960. With a local thermal emitter at a suitable temperature these losses can be minimized and high efficiencies are attainable. Previous efforts have attempted to tune the emissivity spectrum of the emitter, minimizing the amount of below‑bandgap radiation reaching the photovoltaic cell.  This approach, however, bring some challenges due to the difficulty of developing a high quality spectral filter that remains stable at high temperatures.

We report on a thermo‑photovoltaic device that relies on the band‑edge of a photovoltaic absorber to spectrally filter the incoming radiation. Photons above the bandgap are converted to electricity, while the unused and unabsorbed photons below the bandgap are reflected by a ~94% reflective rear electrode and recovered by the source of radiation. Our system uses graphite as the blackbody emitter, and In0.55Ga0.45As (bandgap of 0.74eV) as the photovoltaic absorber.  For an emitter temperature of ~1200°C, we report a power conversion efficiency of 28.1%.

12:30 - 14:30
Lunch
PVCon S9.3
Chair: Luis Pazos Outon
14:30 - 15:00
S9.3-I1
Ito, Seigo
University of Hyogo
Studies of Tandem Solar Cells and Stability Issue of Perovskite Solar Cells
Seigo Ito
University of Hyogo, JP

Seigo Ito received his Ph.D. from the University of Tokyo (Japan), with a thesis that was the first to discuss Graetzel-type dye-sensitized solar cells in Japan. He worked in the Laboratory of Professor Shozo Yanagida (Osaka University, Japan) for two years, and in the Laboratory of Professor Michael Graetzel, at the Swiss federal Institute of Technology (EPFL) in Lausanne as a postdoctoral scientist for over three years, where his efforts focused on the progress of high-efficiency dye-sensitized solar cells. He is currently professor at University of Hyogo, making new printable cost-effective solar cells.

Authors
Seigo Ito a
Affiliations
a, University of Hyogo, Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, 2167 Shosha, Himeji, Hyogo, JP
Abstract

In order to consider the effective structure of silicon solar cells for perovskite/silicon tandem solar cells, the optic and photovoltaic properties of textured and flat silicon surfaces were compared using mechanical-stacking-tandem of 2- and 4- terminal structures by perovskite layers on crystal silicon wafers.  The reflectance of the texture silicon surface in the range of 750-1050 nm could be reduced more than that of the flat silicon surface (from 2.7% to 0.8%), which resulted in increases in average IPCE values (from 83.0% to 88.0%) and current density (from 13.7 mA cm-2 to 14.8 mA cm-2).  Using the texture surface of silicon heterojunction (SHJ) solar cells, the significant conversion efficiency of 21.4% was achieved by 4-terminal device, which was 2.4%-up from that of SHJ solar cells alone.

And, for the progress of perovskite/silicon tandem solar cells, we introduce a totally vacuum-free cost-efficient crystalline silicon solar cells. Solar cells were fabricated based on low-cost techniques including spin coating, spray pyrolysis and screen-printing. A best efficiency of 17.51% was achieved by non-vacuum process with a basic structure of <AI/p+/p-Si/n+/SiO2/TiO2/Ag> CZ-Si p-type solar cells. JSC and VOC of the best cell were measured as 38.1 mAcm-2 and 596.2 mV, respectively with FF of 77.1%. Suns-Voc measurements were carried out and the detrimental effect of the series resistance on the cell performance was revealed. It is concluded that higher efficiencies are achievable by the improvements of the contacts and by utilizing good quality starting wafers.

Finally, for the study of stability test on perovskite solar cells, Carbon-based triple-porous-layer perovskite solar cells without any hole transporting material were selected for investigation to reduce internal degradation issues about thermal stress.  The sealed perovskite solar cells which kept at 100 ˚C performed slow degradation in the power conversion efficiency until 4500 h, but the degradation speed was accelerated after that.  By analyzing the perovskite solar cells aged for 7000 h at 100 ˚C, the results of energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy suggest that, although Pb2+ and I- were sealed inside of the devices, the most of CH3NH3+ diffused out of the sealant UV-curable adhesive at 100 ˚C, which is the reason of the thermal degradation for the sealed perovskite solar cells.

15:00 - 15:30
S9.3-O1
Jooss, Christian
University of Goettingen
Hot Polaron States with Nanosecond Lifetime in Manganite Perovskite Photovoltaic Junctions
Christian Jooss
University of Goettingen, DE
Authors
Christian Jooss a, Dirk Raiser b, Benedikt Ifland a, Mohsen Sotoudeh c, Peter Blöchl c, Michael Seibt e, Tobias Meyer e, Simone Techert d, Birte Kressdorf a, Patrick Peretzki e
Affiliations
a, Institute for Material Physics, University of Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen, Germany
b, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, D-37077 Goettingen, Germany
c, Institute for Theoretical Physics, University of Clausthal, Leibnizstrasse 10, D-38678 Clausthal-Zellerfeld, Germany, DE
d, FS-SCS Deutsches Elektronensynchrotron DESY, Germany, Notkestraße, 85, Hamburg, DE
e, IV. Physicak Institute, University of Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen, Germ
Abstract

Understanding and controlling the relaxation process of optically excited charge carriers in solids with strong correlations is of great interest in the quest for new strategies to exploit solar energy. Usually, optically excited electrons in a solid thermalize rapidly on a femtosecond to picosecond timescale due to interactions with other electrons and phonons. New mechanisms to slow down thermalization would thus be of great significance for efficient light energy conversion, e.g. in photovoltaic devices. Ultrafast optical pump probe experiments in the manganite Pr0.65Ca0.35MnO3, a photovoltaic and electro-catalytic material with strong polaronic correlations, reveal an ultra-slow recombination dynamics on a nanosecond-time scale [1]. The photo-diffusion of excited electron-hole polaron pairs gives rice to a pronounced photovoltaic effect [1,2] and is studied by electron beam induced current (EBIC) on nanometer length scales [3]. Theoretical considerations suggest that the excited charge carriers are trapped in a hot polaron state. The dependence of the lifetime on charge order implies that strong correlation between the excited polaron and the octahedral dynamics of its environment appears to be substantial for stabilizing the hot polaron [4]. Furthermore, modification of the interfacial atomic and electronic structure of the manganite-titanite junctions gives insights into the processes underlying the transfer of a small polaron across the interface [5].

[1] Evolution of hot polaron states with a nanosecond lifetime in a manganite, D. Raiser, S. Mildner, B. Ifland, M. Sotoudeh, P. Blöchl, S. Techert, C. Jooss, Advanced Energy Materials, 2017, 1602174, DOI: 10.1002/aenm.201602174

[2] Polaron absorption for photovoltaic energy conversion in a manganite-titanate pn-heterojunction, G. Saucke, J. Norpoth, D. Su, Y. Zhu and Ch. Jooss, Phys. Rev. B 85, 165315 (2012).

[3]  Low energy scanning transmission electron beam induced current for nanoscale characterization of p-n junctions, Patrick Peretzki, B. Ifland, C. Jooss, M.Seibt, Phys. Status Solidi RRL 11,1600358 (2017)

 

[4] Contribution of Jahn-Teller and charge transfer excitations to the photovoltaic effect of manganite/titanite heterojunctions, B. Ifland, J. Hoffmann, B. Kressdorf, V. Roddatis, M. Seibt and Ch. Jooss, New Journal of Physics, 19 (2017) 063046

[5 ] Current–voltage characteristics of manganite–titanite perovskite junctions, B. Ifland, P. Peretzki, B. Kressdorf, Ph. Saring, A. Kelling, M. Seibt and Ch. Jooss, Beilstein Journal of Nanotechnology, 2015, 6, 1467–1484

15:30 - 16:00
S9.3-O2
Tavakoli, Nasim
Center for Nanophotonics, AMOLF, The Netherlands
Combining 1D and 2D waveguiding properties for ultrathin tandem solar cells
Nasim Tavakoli
Center for Nanophotonics, AMOLF, The Netherlands, NL
Authors
Nasim Tavakoli a, Esther Alarcon Llado a
Affiliations
a, Center for Nanophotonics, AMOLF, The Netherlands, Science Park, 104, Amsterdam, NL
Abstract

As an effective way to surpass the Shockley-Queisser efficiency limit multijunction solar cells have been designed and developed for many years now. Silicon, in particular, is very appealing as the low bandgap material in a tandem design since we already have a mature understanding of its optical and electronic properties and its fabrication technology is widely available. For the high bandgap, III-V materials are shown to be promising in both light management and carrier management. However, fabricating monolithic III-V on Si multijunction is still challenged by various limiting factors such as lattice mismatching, high fabrication cost, and the size/weight of the tandem designs which makes them unsuitable for many applications. One way to tackle these issue is epitaxial growth of vertically standing III-V nanowires on Si ultrathin substrate. This design has many advantages: Not only the wires can overcome the mismatching problem thanks to their intrinsic strain relaxation properties, they also create a natural anti-reflection coating.

In this work, we study light-matter interactions in GaAs-based nanowire arrays on ultrathin silicon film with the dual goal of obtaining large absorption in the array and improving light trapping in the bottom thin film cell. By performing FDTD simulations we show that the coupling of the incident light to the HE11 waveguiding mode of the wires not only boosts the absorption in the wires themselves, but also efficiently transfers the non-absorbed light to Si bottom cell. Moreover, the grating properties of the array is capable of changing the momentum of the transmitted light. In this way, light is trapped in the Si thin film. As a result, we induce higher absorption for the wavelengths close to the bandgap of silicon where the absorption coefficient is very low.

To conclude, by optimizing the geometry of both each wire and the grating we are able to firstly couple the light into waveguiding modes of each wire and later couple the transmitted/scattered light into waveguiding modes of the ultrathin silicon layer underneath. By combining these 1D and 2D waveguiding properties a high efficiency ultrathin and flexible tandem cell is designed.

 

16:00 - 16:30
S9.3-O3
Suárez, Isaac
Universitat de València (UV), Spain
Wearable Amplifier-Photodetector System Based on PMMA/Perovskite Waveguides Integrated on a Wearable Nanocellulose Substrate
Isaac Suárez
Universitat de València (UV), Spain, ES
Authors
Isaac Suárez a
Affiliations
a, Universitat de València (UV), Spain, ES
Abstract

In the last years semiconductor organometallic halide (CH3NH3PbX3, X=Cl, Br, I) perovskites (MHP) have emerged as an outstanding material to develop a new generation of photonics and electronics devices [1]. MHPs present excellent conductivity, light detection and emission properties, which have been successfully exploited in the implementation of broad range of optoelectronic devices. Examples include solar cells with efficiencies higher than 22%, broad band photodetectors, efficient optical sources, or optical amplifiers with low thresholds. Nevertheless, in spite of this important progress, most of this works use a rigid substrate to fabricate the device, while the integration of MHPs in flexible substrate is still at its very beginning. These new kinds of substrates, however, represent an important trend in optoelectronics, not only due to their wide range of applications, but also to the possibility to implement wearable devices directly in contact with the skin or clothes. In this work, MHP materials are successfully incorporated on a nanocellulose (NC) substrate with the intention to to construct wearable devices with new functionalities based on the light emission/detection properties of MHPs. In particular, a bilayer Poly(methyl methacrylate) /MHP deposited on NC  resulted in a suitable waveguide to demonstrate amplification of the spontaneous emission (ASE) with a threshold as low as 3-4 nJ [2-3].  Moreover, when a photodetector system is integrated within the waveguide, the device provides a photocurrent useful to monitor the light/ASE propagated/generated along the structure [4]. This approximation paves the road of new wearable systems with a broad range of applications.

[1] I. Suárez: Active photonic devices based on colloidal semiconductor nanocrystals and organometallic halide perovskites, Eur. Phys. J. Appl. Phys., vol. 75, 30001, 2016.

[2] T.T. Ngo, et al.: Enhancement of the Performance of Perovskite Solar Cells, LEDs, and Optical Amplifiers by Anti‐Solvent Additive Deposition," Adv. Mater., vol.  29, pp.  1604056, Dec. 2016

[3] I. Suárez et al.: Polymer/perovskite amplifying waveguides for active hybrid silicon photonics. Adv. Mater., vol. 27, 6157-6162, 2015.

[4] I. Suárez et al.: Integrated Optical Amplifier-Photodetector on a Wearable Nanocellulose Substrate. Adv. Opt. Matter., online available.

16:30 - 17:00
S9.3-O4
Murcia, Sebastian
Catalonia Institute for Energy Research (IREC)
Integration of Adapted Thin-film Photovoltaics into Solar Vanadium Redox Flow Batteries for Energy Storage
Sebastian Murcia
Catalonia Institute for Energy Research (IREC), ES
Authors
Sebastián Murcia-López a, Nina Carretero a, Cristina Flox a, Félix Urbain a, Joan R. Morante a, b, Teresa Andreu a
Affiliations
a, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adria del Besos, ES
b, University of Barcelona, Carrer de Martí i Franquès, 1, Barcelona, ES
Abstract

The electrical conversion and storage of solar energy is a crucial world target in the long-term scenario. Therefore, the use and integration of photovoltaic (PV) technologies into different electrochemical processes for obtaining solar fuels have been strongly developed in the last years. Following this approach, the integration of PV and other energy storage systems such as batteries is a logical approach that pursues simplification of capture and storage of the solar energy through direct conversion into (electro)chemical energy. These so-called solar batteries offer the advantage of carrying out in a single device, a process normally done in several steps in two independent units, which result expensive, bulky and inefficient. Among several other configurations, the application of this concept to redox flow batteries has attracted attention considering their advantages, including decoupling of energy and power and large-scale development.

Despite the obvious interest in these systems, the direct influence of the redox potential (i.e., selected redox pair) into the operation point of the PV, constitutes an important challenge in the design of such devices. Therefore, some studies have focused on metal oxides and/or on PV tandem configurations, for instance CdS/DSSC, being applied to organic redox pairs and/or to vanadium redox flow batteries (VRFB) reaching limited state of charge (SoC).

In this work, we report the adaptation and integration of thin film PV to VRFB in a single device. Copper Indium Gallium Selenide (CIGS) modules have been adapted by the interconnection of CIGS commercial cells deposited on flexible metallic substrates. This way, three and four-cell modules leading to different open circuit voltages (OCV) and i-V performances were integrated in VRFB with modified carbon felt (CF) electrodes. Two kinds of batteries reaching different cell voltages were evaluated.

A very close dependence between the VRFB cell potential and the photocurrent of the photovoltaic system has been observed, ultimately influencing the overall capacity of the battery. In particular, there is a clear difference between using 3 or 4 CIGS cells, due to the different operation points. Therefore, it is obvious that adapting of the PV is necessary before its integration. Ultimately, the four-cell module has provided enough photovoltage for carrying out the unbiased photo-assisted charge of the battery up to SoC 100%, with acceptable charge time and overall round-trip energy conversion efficiency of around 4%.

 
Tue Oct 23 2018
PVCon S9.4
Chair: Alejandro Perez-Rodriguez
09:00 - 09:30
S9.4-I1
Brammertz, Guy
IMEC, IMOMEC
Wide Band Gap Kesterite Absorbers for Tandem or Semi-transparent Solar Cells
Guy Brammertz
IMEC, IMOMEC, BE

Guy Brammertz graduated in 1999 from the University of Liège (Belgium) in Applied Physics. In 2003 he obtained his Ph.D. from the University of Twente (The Netherlands) defending a thesis about his work on superconducting Josephson junction photon detectors carried out for the European Space Agency. He then joined imec in 2004, where he first was involved in the LogicDram program aiming at the fabrication of Ge and III-V 35 nm gate length MOS transistors for CMOS applications. His work focused on electrical and optical characterization as well as passivation of electrical defects at Ge and III-V/oxide interfaces. In 2011 he joined the imec photovoltaic program, where he is now working on the fabrication and characterization of thin film solar cells based on Cu(In,Ga)(S,Se)2 (CIGS), Cu2ZnSn(S,Se)4 (CZTS) and Cu2ZnGe(S,Se)4 (CZGS) absorbers.

Authors
Guy Brammertz a, b, Leo Choubrac e, Thierry Kohl a, b, Jessica deWild a, b, Marc Meuris a, b, Jef Poortmans b, c, d, Bart Vermang b, c
Affiliations
a, Imec division IMOMEC (partner in Solliance & EnergyVille), Wetenschapspark, 1, Diepenbeek, BE
b, Institute for Material Research (IMO), Hasselt University (partner in Solliance & EnergyVille), BE, Agoralaan gebouw H, Diepenbeek, 3590, Belgium., BE
c, IMEC - Solliance, Thin Film PV, Kapeldreef, 75, Leuven, BE
d, Department of Electrical Engineering, KU Leuven, Belgium., Kasteelpark Arenberg, 10, Leuven, BE
e, Institut des Matériaux Jean Rouxel, Université de Nantes, Chemin de la Houssinière, 2, Nantes, FR
Abstract

In the present talk we discuss the opportunities and challenges for Kesterite based high band gap absorber layers to act as functional layers in tandem or semi transparent thin film solar cells. Materials based on the kesterite crystal structure have already shown their good properties as thin film solar cell absorbers. Depending on the elements in the crystal, a high band gap value can be achieved, which could present an opportunity for these type of materials to be used as a top cell in tandem devices or as an active layer in a semi-transparent thin film solar cell. After a general introduction we present the properties of Cu2ZnGe(S,Se)4 based solar cell devices, which have a band gap in the 1.4 to 2 eV range depending on the S content in the layer. The crystallization process is analyzed and the solar cell properties of such devices are presented in detail. Solar cell conversion efficiencies in excess of 8 % could be achieved with this material system but some challenges remain. We will compare these results to other high band gap chalcogenide thin film absorber materials.

09:30 - 10:00
S9.4-O1
Alcobé, Xavier
CZTSe Solar Cells Developed On Alternative Substrates for Advanced Applications
Xavier Alcobé
Authors
Ignacio Becerril-Romero a, Simón Lopez-Marino a, Marcel Placidi a, Moisés Espíndola-Rodríguez a, Florian Oliva a, Victor Izquierdo-Roca a, Yudania Sánchez a, Xavier Alcobe b, Edgardo Saucedo a, Paul Pistor a, c
Affiliations
a, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adria del Besos, ES
b, Centres Científics i Tecnològics (CCiTUB) de la Universitat de Barcelona, C/ Lluis Solé i Sabaris 1-3, 08028 Barcelona, Spain
c, Martin-Luther-University Halle-Wittenberg, Germany, Von Danckelmann Platz 3, Halle, DE
Abstract

Thin-film technologies represent one step forward in the range of applicability of photovoltaics (PV) since they can be manufactured onto virtually any surface or material giving them an enormous versatility compared to Si-based solar cells. Flexible and light-weight substrates like thin metallic or polymeric foils are particularly attractive for thin-film PV since they allow powering portable electronics, wearables and IoT devices adapting to any shape and without adding extra weight. These characteristics also make them interesting for applications in the space and transportation industry. In addition, flexible substrates are expected to reduce PV fabrication costs through roll-to-roll high-throughput industrial processes. Another interesting niche of application that can benefit from the versatility of thin-film PV is building-integrated photovoltaics (BIPV). Solar devices can be directly deposited on materials commonly used in construction such as ceramics or glazing so that solar devices are made integral parts of buildings reducing manufacturing and installation costs as well as avoiding the need of extra land allocation for power generation which are often regarded as two critical factors that may restrict the massive deployment of photovoltaics. Among thin-film technologies, Cu2ZnSn(S1-xSex)4 compounds, also known as Kesterites, stand out by the earth-abundancy and non-toxicity of its constituent elements that makes them compatible with a future mass deployment of PV. Thus, this work explores the implementation of a Cu2ZnSnSe4 (CZTSe) sequential fabrication process based on the selenization of sputtered metallic stack precursors onto different substrates: polyimide (PI), stainless steel (SS) and ceramic tiles. However, the increased applicability range of these substrates has a dark side since they lack several favorable properties of soda-lime glass (SLG): favourable thermomechanical properties and beneficial alkali (Na and K) composition that diffuse into the absorber during its synthesis and are fundamental for high efficiency kesterite devices. This way, SS and ceramic possess rough surfaces that complicate the deposition of thin films and detrimental impurities in their composition that can hinder the performance of the devices. As for PI it has a low thermal robustness that limits the synthesis temperature below 500ºC. In addition, none of them contain alkalis thus requiring the development of extrinsic doping procedures. In this work, we present different strategies to overcome the specific problems of each of the substrates and demonstrate their suitability as substrates for CZTSe solar cells.

10:00 - 10:30
S9.4-I2
Würfel, Uli
Fraunhofer Institute for Solar Energy Systems ISE, Germany
Factors Determining the Electrode Selectivity in Solar Cells and their Impact on Device Performance
Uli Würfel
Fraunhofer Institute for Solar Energy Systems ISE, Germany, DE
Authors
Uli Würfel a
Affiliations
a, Fraunhofer Institute for Solar Energy Systems ISE, Germany, Heidenhofstraße, 2, Freiburg im Breisgau, DE
Abstract

In a solar cell, an ideally selective electron (hole) contact would only exchange electrons (holes) with the conduction (valence) band of the absorber material. This would ensure that no losses occur due to surface recombination
and the open-cicuit voltage would be determined solely by generation and recombination in the bulk. We had shown that selectivity depends on the conductivity of the minority carriers in the vicinity of the contacts [1].
Introducing this general concept allows also to show that a solar cell does not require an electric field in the dark und thus that Voc can be much larger than the built-in voltage. After that different approaches will be discussed how to achieve a high degree of contact selectivity in solar cells such as the mobility junction, the pn junction, the heterojunction and more recent concepts such as thin layers with strong dipole moment altering the effective work function of the electrode [2,3]. Results from intensity and temperature-dependent measurements in combination with numerical simulations will be discussed in detail. Finally, examples from our own labs shall demonstrate which phenomena can arise from the selectivcity of the contacts in the case of silicon, organic and perovskite solar cells [4,5].

[1] U. Würfel, A. Cuevas, P. Würfel, IEEE J. Photovoltaics 5 (2015), 461
[2] U. Würfel et al., Adv. Energy Mater. 6 (2016), 1600594
[3] C. Reichel, U. Würfel et al., J. Appl. Phys. 123 (2018), 024505
[4] J. Reinhardt, M. Grein, C. Bühler, M. Schubert and U. Würfel, Adv. Energy Mater. 4 (2014), 1400081
[5] A. Spies, T. Sarkar, M. List and U. Würfel Adv. Energy Mater. 7 (2017), 1601750

10:30 - 11:00
Coffee Break
PVCon S9.5
Chair: Guy Brammertz
11:00 - 11:30
S9.5-I1
Placidi, Marcel
Catalonia Institute for Energy Research (IREC)
TCMs for Next Generation Thin Film Photovoltaics
Marcel Placidi
Catalonia Institute for Energy Research (IREC), ES
Authors
Marcel Placidi a
Affiliations
a, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adria del Besos, ES
Abstract

Several emerging photovoltaic (PV) applications are currently requiring the development and implementation of transparent conductive materials (TCMs) beyond their traditional use as front electrodes in solar cells, and not only letting the light reaching the junction. Next generation PV devices with higher functionalities as transparent/semitransparent devices for glass-based building integration elements and windows require the integration of TCMs at several levels of the device architecture, with functions as charge transport or even light absorber layers. This is also required for advanced device architectures aiming towards improving the device efficiency as bifacial cells and tandem/multijunction concepts. The TCMs family includes thus electrodes, selective contacts, and even absorber layers presenting a certain degree of transparency (defined by a wide bandgap).

The transparent conductive oxides (TCOs) are the most common TCMs encountered in literature, thanks to their high electrical conductivity and light transmittance, and are often used as high-performance n-type conductors in a plethora of transparent devices (LEDs, gas sensors, solar cell, etc). Less is found regarding p-type conductors, even if recently Cu-based materials (oxides and chalcogenides) have gained interest in the field, especially thinking in their integration as interlayer electrodes in tandem devices. Another example of TCMs for PV relies in the selective contacts, generally based on metallic oxides/chalcogenides, exploiting kinetics at the interfaces with the absorber, establishing different conductivities for electrons and holes in different regions of the device, thus creating effective separation and selective transport. Finally, wide bandgap absorbers, also respond to the criteria of (semi-) transparent conductive material, thus completing the TCMs family.

After making a brief review of the most common uses of TCMs for PV applications, summarizing their main potential and challenges, a special focus will be put on their integration with existing thin film technologies, in particular with kesterite. The main results of the optimization of the replacement of the Mo back contact (commonly used in the kesterite technology) by TCOs will be presented. In particular the required functionalization (involving TCMs as interlayers improving the valence band alignment) of the TCOs for several anionic compositions of the kesterite absorbers (i.e. bandgaps) will be presented, such as the first results of integration in a tandem structure.

11:30 - 11:45
Abstract not programmed
11:45 - 12:00
S9.5-O2
BAILO BOBI, EDUARD
Francisco Albero - FAE
Printing Based Processes for Low Cost CRM Free Sustainable Technologies on Ceramic Ecofriendly Substrates for BIPV Applications.
EDUARD BAILO BOBI
Francisco Albero - FAE, ES
Authors
EDUARD BAILO BOBI a, b, c, BEATRIZ MEDINA-RODRIGUEZ a, MONICA COLINA b, MIREIA BLANES a, c, MARCEL PLACIDI b, FRANCISCO RAMOS a, EDGARDO SAUCEDO b, ALBERT CIRERA c, ALEJANDRO PEREZ b, c
Affiliations
a, Francisco Albero - FAE, Rafael Barradas 1, Hospitalet de Llobregat, Barcelona, 08908, ES
b, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adria del Besos, ES
c, IN2UB, Departament d’Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
Abstract

The manufacturing cost of thin film solar cells and modules can be significantly reduced through the replacement of vacuum deposition steps by solution-based chemical routes. In the case of kesterite PV technologies, use of solution-based processes for the preparation of the device absorbers has demonstrated the possibility to achieve device efficiencies similar to those obtained with vacuum-based processes that are used for the industrial implementation of chalcogenide technologies. Kesterites are Cu2Zn,Sn(S,Se)4 compounds that are receiving an increasing interest for the development of PV devices free of critical raw materials (CRM), which are strongly relevant for a sustainable mass-deployment of the proposed applications. Kesterite based technologies benefit also from a high level of technological compatibility with technologies that are already at industrial production scale, as CIGS. In this case, relevant challenges to achieve a full exploitation of the cost reduction potential of these technologies are related to: i) the use of processes scalable to industrial production scale; and ii) avoiding the use of highly toxic or hazardous reagents as hydrazine. This gives a strong interest to printing based processes that are compatible with very high throughput processes. Between them, ink-jet printing processes have an additional advantage related to the possibility for the definition of spatially resolved processes, which provides with a higher degree of device design flexibility.

Nowadays, Building integrated photovoltaics (BIPV) has acquired a great interest within the possible applications for thin film photovoltaic devices. It is for this reason that it is vitally important to develop technologies and processes compatible with their integration on substrates alternative to glass, as ceramic based architectural substrates.

This work is focused on the analysis of the manufacturing cost reduction of thin film solar cells and modules by replacing vacuum process steps involved on the precursor preparation by in-air screen printing based processes on ceramics substrates. Solution-based in conjunction of inkjet technology were used for the preparation of the PV active layers on molybdenum coated vitro-ceramic substrates made from recovered material in order to demostrate the viability of these techlogogies for the preparation of more ecofriendly and sustainable opto-electronic devices for BIPV applicationa. With this in mind, promising results were obtanained on cell device prototypes getting around 75% of efficientcy on ceramic substrate comparing with the average value on soda-lime reference substrate, and their scalability for the developmnet of medium size module prototypes has been investigated.

With this approach, the aim is add value to non-vacuum technologies for their future transition for the industrial production of sustainable cost efficient BIPV elements and systems.

12:00 - 12:15
S9.5-O1
Jawhari, Tariq
Thin Film Sb2(S,Se)3 Based Solar Cell: Emergent Technology Compatible with Ubiquitous Applications
Tariq Jawhari
Authors
Pedro Vidal a, Victor Izquierdo-Roca a, Markus Neuschitzer a, Edgardo Saucedo a, Lorenzo Calvo-Barrio b, c, Tariq Jawhari b, Alejandro Perez-Rodriguez a, c
Affiliations
a, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adria del Besos, ES
b, Centres Científics i Tecnològics (CCiTUB) de la Universitat de Barcelona, C/ Lluis Solé i Sabaris 1-3, 08028 Barcelona, Spain
c, IN2UB, Departament d’Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
Abstract

Sb2(S,Se)3, is a relevant semiconductor free of critical raw materials that is receiving an increasing interest for photovoltaic (PV) applications, demonstrating solar cells in superstrate configuration with a record efficiency of 6.5%. The semiconductor is characterised by a 1D crystalline formation which in principle favours formation of benign grain boundaries and anisotropic conduction properties. Additionally Sb2Se3 has a high degree of flexibility in terms of substrate type, due to its relatively low synthesis temperature (300-400 ºC). This allows the use of different substrates as polymers, steels, ceramics and TCO/glass. The compound has also the possibility to tune the band gap between 1.1 and 1.9 eV, which opens very interesting perspectives for wide band gap solar cells suitable for energy harvesting in indoor applications, semi-transparent devices or high efficiency tandem devices. This high versatility make this compound very promising for ubiquitous applications based on the integration of PV devices in products and systems requiring light weight, mechanical flexibility and/or optical transparency. 

This work reports a systematic study of Sb2Se3 layers and substrate configuration solar cells that were fabricated using a reactive annealing treatment of Sb evaporated precursors. The study analyses the dependence of the physico-chemical properties of the layers and the optoelectronic characteristics of the devices on the pressure and temperature used during the Se reactive annealing process, as well as on the characteristics of the substrate layers, having used different kinds of substrates including both transparent (FTO) and non-transparent (Mo, Al, Au, Ag, W) back contact materials. The results obtained have allowed us to achieve  reproducible functional devices using near atmospheric pressure at 320ºC on Mo coated soda lime glass substrate with a promising efficiency of 5.6% close to the 6.5% certified world record.

This study involved a deep characterization of the fundamental properties of the synthesised layers that that have been correlated with the optoelectronic characterization of the devices. The results allow us to observe the formation of continuous layers with large and homogeneous crystals, reporting for the first time a weak PL close to 1.3eV in agreement with the band gap value obtained by IQE. Finally, the systematic vibrational characterization of the layers performed under resonant and non- resonant Raman conditions –including measurements on reference single crystal Sb2Se3 – has allowed the identification of 15 Raman peaks of the compound.

12:30 - 14:30
Lunch
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info