Claudio Ampelli obtained his PhD from the Faculty of Engineering at the University of Pisa (Italy) in 2005, with a thesis focused on the development of chemical reactors for highly reactive systems, with emphasis on industrial sensors. After completing his doctorate, he worked as a postdoctoral fellow at the University of Messina (Italy), gaining extensive experience in chemical and industrial engineering, especially in the development of nano-engineered electrodes and in the design and optimisation of (photo)electrochemical devices.
In 2010, he assumed the position of Junior Researcher (RTD), in 2016 Senior Researcher (RTD-b), and in 2019 Associate Professor in the Academic Discipline 09/ICHI-02 (Chemical Plants and Technologies). In the same discipline, he obtained the national scientific qualification to Full Professor in 2022.
He is a member of the Academic Board of the Industrial and International Doctoral School in “Advanced catalytic processes for using renewable energy sources” at the University of Messina. He has supervised over 10 PhD theses, several master’s and bachelor’s theses, and postdoctoral students’ projects.
Currently, he is the Principal Investigator (PI) for the research unit of Messina of two European H2020 Projects and a national PRIN project. In recent years, he has been involved in more than 20 multidisciplinary research projects funded by MUR and European Commission, coordinating activities in many work packages. Among these, from 2017 to 2021, under the H2020 A-LEAF Project (ID: 732840) he led an experimental study for the realization of a high-efficiency (>10%) artificial leaf-type reactor for the production of green hydrogen and formic acid.
He has co-authored around 90 articles indexed in ISI/Scopus and 130 contributions to national and international conferences (with 30 oral communications and 3 invited keynote lectures). He serves as a reviewer for many international scientific journals (with more than 120 certified reviews on Web of Science), including Science, Nature Catalysis, Applied Catalysis B and Chemical Engineering Journal. Since 2022, he has joined the Editorial Board of Journal of Energy Chemistry (Elsevier, IF=14.0, Q1).
Recently, he was invited to prestigious universities and research institutions in Portugal, Spain, France and Switzerland as a Visiting Professor and/or a Researcher as part of Erasmus Plus and Research & Mobility projects. He was included in the world’s top 2% of Scientist List for the years 2020-2021-2022 according to the ranking compiled by Stanford University.
His current research interests focus on the development of new chemical processes and technologies based on photo-electrocatalytic systems for the sustainable production of energy, fuels, and products of high industrial interest. His studies range from the synthesis of nanostructured materials for the preparation of electrodes to the design and construction of unconventional (photo-)electrochemical devices, including industrial scale-up. Special attention is given to understanding the phenomena that influence the chemical kinetics determining process performance, such as light absorption, charge separation, diffusion and transport of species in solution and at interfaces, charge distribution on electrodes, and overpotential.
The processes of interest include: i) the water photo-electrolysis and photo-reforming of organic waste streams for the production of green hydrogen; ii) the (photo-)electrocatalytic reduction of CO2 into higher-value products (in liquid and gas phases); iii) the electrocatalytic synthesis of ammonia from nitrogen and water at room temperature and atmospheric pressure as an alternative to the Haber-Bosch process; and iv) the synthesis of ammonia and methane through the combination of non-thermal plasma and catalysis.