DOI: https://doi.org/10.29363/nanoge.sus-mhp.2022.012
Publication date: 15th November 2022
The increasing interest in lead-free photovoltaics has accelerated research efforts worldwide, in particular, tin has been recognized as one of the most promising alternatives, exhibiting suitable optoelectronic properties, potentially decreased toxicity, and device performance. Nonetheless, the development of tin-based perovskites has been primarily hindered because of the ease of oxidation from Sn2+ into Sn4+, which promotes degradation mechanisms and compromises the long-term stability.
Besides this intrinsic challenge, most studies have focused on spin coating as the main deposition method for the absorber layer, which is not compatible with large area manufacturing techniques like roll-to-roll or sheet-to-sheet production. In this work, we explore blade coating and inkjet printing as versatile processes well-suited for commercial production; ink engineering of the solvent system and additives was used as a strategy to control the crystallization dynamics and obtain pinhole-free films on flexible substrates. Furthermore, the influence of processing conditions such as the coating speed, drying method, and waveform design on the perovskite morphology was analyzed. The potential industrial applicability of completed devices was tested through stability characterization after lamination and large area module fabrication.
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 862656.