Tuning the insulator metal transition in rare earth nickelates through dynamic electrochemical ion insertion
Alan Zhang a, Catalin Spataru a, Joshua Sugar a, A. Alec Talin a, Suhas Kumar a, Elliot Fuller a
a Sandia National Laboratories, Livermore, CA, USA
Proceedings of 24th International Conference on Solid State Ionics (SSI24)
Emerging Materials for High-Performance Devices
London, United Kingdom, 2024 July 14th - 19th
Organizers: John Kilner and Stephen Skinner
Oral, Elliot Fuller, presentation 463
Publication date: 10th April 2024

The rare earth nickelates have received renewed attention due to the discovery of superconductivity in infinite layered structures under substitutional doping[1] and the observation of widely tunable electronic behavior in perovskite structures for use in analog memory devices[2]. Recent work has demonstrated that interstitial dopants (H, alkali metals) can be introduced into nickelates to change the room temperature resistance by 106 -108. However, the evolution of the bond disproportionation transition as a function of interstitial dopants has not been reported and the doping fraction leading to rich correlated electronic behavior is often unknown. Therefore, the electronic phase diagram in nickelate compounds as a function of interstitial doping is of interest. Here, we carried out lithium doping of PrNiO3 using a dynamic electrochemical process. We constructed electrochemical cells using epitaxial thin films as electrodes and then insert lithium using an electrolyte. For LixPrNiO3, we find that increased lithium doping interrupts bond disproportionation causing a reduction in the ground state resistivity at small fractions 0<x<0.25 with a successively smaller ON/OFF ratio.   At larger fractions x>0.25 we observe the disproportionation transition to be destroyed and fully insulating type behavior is observed over T= 5-300K. Raman spectroscopy reveals that lithium introduces structural changes that affect A1g modes which are a sensitive probe of bond disproportionation. Density functional theory calculations confirm the disruption to bond disproportionation with an initial reduction in the bandgap at small fractions and an increase at larger fractions. The results point to interstitial doping as a powerful method to synthesize new phases in strongly correlated systems.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info