Publication date: 10th April 2024
All-solid-state lithium batteries (ASSLBs) are considered as one of the most promising technologies for future energy storage, owing to their safety and high power density. NASICON-structured lithium aluminum titanium phosphate (Li1.3Al0.3Ti1.7(PO4)3, LATP) can be an enabling electrolyte for these devices owing to its high ionic conductivity and superior stability at high voltages (e.g. enabling LiCoO2 cathodes). Although it has not received much attention from a manufacturing standpoint due to insufficient electrochemical stability at low voltages (e.g. vs. Li anodes), it is promising for bilayer or multilayer electrolyte architectures. Our study focuses on the manufacturing of high-performance multilayer electrolytes, implying that our proposed micro-battery system includes an anode, anode-side electrolyte, possible interlayer, cathode-side electrolyte, and cathode.
We manufacture LATP thin films via a custom glovebox-attached pulsed laser deposition (PLD) system and study the fabrication parameter – stoichiometry – structure – conductivity relationships. To control the composition and address the tendency for loss of multiple light and/or volatile species, we use a multilayer growth approach from two targets, LATP and Li3PO4. By varying the LATP-Li3PO4 deposition ratio, the PLD deposition pressures, and heat treatment during or post-deposition, we study how those parameters affect 1) Li and PO4 concentrations by nuclear reaction analysis (referenced to heavier ions’ concentrations by Rutherford backscattering spectrometry), 2) crystallinity, and 3) structural (crystallographic phase) composition of the films, by grazing-incidence X-ray diffraction. The differences in the chemical and structural parameters are then correlated with ionic conductivity measured via in-plane electrochemical impedance spectroscopy (EIS) as a function of temperature in an inert environment. Our study identifies challenges and solutions for the manufacture of thin-film electrolytes containing multiple volatile species and light elements via PLD and provides understanding of how material phases and stoichiometry influence ionic conductivity.
The work is funded by NSF CMMI 20-37898