Publication date: 10th April 2024
Solid-state batteries using lithium metal anode has a huge potential as post lithium-ion batteries due to high energy density, safety, and fast charging capability. Lithium Lanthanum Zirconate oxide (Li7La3Zr2O12, LLZO) electrolyte is a promising candidate as it demonstrates an excellent compatibility with Li metal anode and notable performance in terms of their critical current density and cycling stability. Despite the promise, establishing a full “solid" cell architecture still faces challenges, mainly in achieving robust contact and low impedance for composite cathodes due to the formation of secondary phases. Thus, integrating with a choice of cathode material into practical devices has lagged, leading to the dearth of lab-scale prototype cell data. Here we report the electrical resistance of composite cathode, LLZO-LiCoO2, is reduced 3-4 orders of magnitude by manipulating sintering atmosphere. Raman mapping reveals the second phase of Li0.5La2Co0.5O4 are avoided in the composite cathode sintered in Li-rich atmosphere as compared to ambient condition. Practically thin electrolyte is fabricated either by co-sintering with the cathode composite or by pulsed laser deposition on the cathode substrate. Discussion is aimed toward further opportunities for all-ceramic cathode-supported cell development to meet important target parameters including interfacial resistance, cathode active loading, specific capacity, and cycling stability.