Beyond the Surface: Probing the Dynamics of Fluorite-Based Solid Oxide Electrolysis Cathodes Through Advanced Multi-Analytical Techniques
Kirsten Rath a, Christian Melcher a, Paul W. Hoffrogge b c, Daniel Schneider b c, Britta Nestler b c, Alexander K. Opitz a
a Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria
b Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, 76133 Karlsruhe, Germany
c Institute of Applied Materials and Institute of Nanotechnoloy, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
Proceedings of 24th International Conference on Solid State Ionics (SSI24)
Emerging Materials for High-Performance Devices
London, United Kingdom, 2024 July 14th - 19th
Organizers: John Kilner and Stephen Skinner
Oral, Kirsten Rath, presentation 315
Publication date: 10th April 2024

Solid oxide electrolysis cells (SOECs) represent a promising avenue for sustainable energy storage, conversion, and the synthesis of fuels and chemical components. While state-of-the-art nickel and yttria-stabilised zirconia (Ni|YSZ) cermet cathodes exhibit high efficiency for CO2 and H2O electrolysis, they are plagued by issues such as coking and morphological degradation. In contrast, ceria-based cathodes, such as nickel and gadolinium-doped ceria (Ni|GDC) cermets, and particularly single-phase GDC cathodes, emerge as compelling alternatives as the mixed conductivity of GDC under reducing conditions leads to a high electrochemical activity. A major benefit of especially single phase GDC cathodes is their high coking resistance during CO2 electrolysis. However, the notable drawback of ceria-based electrodes lies in their pronounced chemical expansion, causing mechanical stress, fractures, and potential cell failure. Furthermore, similar to Ni|YSZ, morphological transformations under intense electrochemical polarisation are anticipated for Ni|GDC due to solid-state (de)wetting phenomena, yet the intricate details of these transformations need further investigations.

In this study, our objectives are two-fold: (i) Investigate the (de)wetting behaviour of nickel on YSZ and GDC (ii) Unravel the intricacies of the chemical expansion observed in GDC under electrochemical polarisation.

For our first topic, dense Ni thin film electrodes are sputter deposited onto bare YSZ single crystals or YSZ substrates that have previously had a GDC film grown using pulsed laser deposition (PLD). Employing techniques such as electron microscopy, focused ion beam cutting, and electron backscatter diffraction, we examine the wetting behaviour under varying atmospheres and polarisations. The data obtained were matched with a computational phase field model and thus form the basis for understanding and predicting the morphological changes in SOEC cermet electrodes.

To fulfil our second goal, single phase, PLD grown GDC thin film electrodes are investigated by the means of in-situ X-ray diffraction (XRD) to study their chemical expansion behaviour under electrochemical polarisation. Electrochemical impedance spectroscopy is employed to simultaneously obtain the chemical capacitance of GDC electrodes, which provides us with the minority point defect concentration related to the expansion. Correlating in-situ XRD results with the material’s defect chemistry, establishes the groundwork for tailoring the electro-chemo-mechanics of SOEC cathodes, that will be done in forthcoming doping-variation experiments.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info