Looking Beyond Alkali Metal Intercalation for Energy Storage
Brent Melot a
a Departments of Chemistry, Chemical Engineering, and Materials Science, University of Southern California, Los Angeles, CA, USA
Proceedings of 24th International Conference on Solid State Ionics (SSI24)
Emerging Materials for High-Performance Devices
London, United Kingdom, 2024 July 14th - 19th
Organizers: John Kilner and Stephen Skinner
Keynote, Brent Melot, presentation 219
Publication date: 10th April 2024

Li-ion batteries are ubiquitous; powering our cell phones, tablets, and laptop computers. Yet, fundamentally, we’ve exclusively relied on materials that adopt the same ordered rock salt structure type for over 20 years. During the time, we have continually optimized the performance of these materials to the point that we are rapidly approaching the theoretical limits on energy density. So where do we go from here? This talk will present an overview of the work our group has done to develop a deeper understanding of the fundamental structural and compositional requirements to effectively move charge through the solid state and discuss nascent work to develop reversible F-ion insertion hosts that function at room temperature. We will begin with an overview of the new design principles that must be applied in designing F-ion batteries and go on to highlight two major structural families that have been developed. We will conclude with a discussion of some of the challenges surrounding electrolyte development.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info