Publication date: 10th April 2024
Protonic ceramic electrochemical cells (PCECs) offer significant promise as efficient and sustainable energy devices, capable of converting chemical fuels into electric power and vice versa, especially when operating at temperatures below 600°C. However, challenges arise due to the formation of secondary phases within perovskite electrolyte materials, stemming from harsh processing conditions involving high temperatures and prolonged annealing periods. These challenges contribute to a notable decline in the electrochemical performance of PCECs. Furthermore, PCECs encounter issues with poor catalytic activity at lower operating temperatures, resulting from sluggish kinetics at the air electrode. To address these obstacles, our research adopts an innovative approach that employs an ultra-fast sintering process, drastically reducing sintering times to just 5 min. Additionally, we introduce air electrodes based on newly doped BaCoO3-𝛿, strategically designed to enhance oxygen permeability and phase stability. These developments aim to improve the activity and durability of PCECs. In this presentation, I will discuss our recent progress in advancing highly efficient PCECs, highlighting our efforts to overcome these critical challenges.