Publication date: 10th April 2024
Dynamic structural and chemical changes of catalyst materials under operation conditions play a crucial role for the activity and stability of electrocatalysts. It is essential to understand the mechanistic processes that govern the material response, oftentimes particularly affecting the catalyst surface and therefore the electrochemical interface, to improve the lifetime of energy conversion devices such as water splitting catalysts or solid oxide cells. Exploring the underlying effects may further allow to develop design principles for tailoring the functionality of energy materials.
Metal exsolution reactions can be driven in fuel electrode materials under the reducing operation conditions of solid oxide cells. The process enables the synthesis of nanostructured catalysts based on the release of a fraction of reducible dopants from a perovskite host to its’ surface and the subsequent nucleation of finely dispersed oxide-supported metal nanoparticles. The performance of such catalysts strongly depends on the nanoparticle characteristics, such as the nanoparticle size and nanoparticle density, correlated to the properties of the active triple-phase-boundaries.
We employ epitaxial thin films with atomically defined surface morphologies to study the exsolution kinetics with respect to the mass transport of Ni dopants from the bulk to the perovskite surface. In addition, we investigate the subsequent growth and coalescence behavior of the exsolved nanoparticles during the reducing thermal annealing. We demonstrate that the electrostatic interactions of exsolution-active dopants with the surface potential that is correlated to the inherent surface space charge region of perovskite oxides determines the kinetics of metal exsolution in our material system [1]. Moreover, we reveal that defects that form under the reducing reaction conditions at the surface of the perovskite support can accelerate nanoparticle clustering and hence degradation of metal exsolution catalysts [2]. Based on our findings, we derive strategies for the control of the metal exsolution dynamics and for the stabilization of exsolved nanoparticles.