Round-robin test of sulfide-based solid-state battery assembly in coin-type cell configuration
Artur Tron a, Alexander Beutl a, Ander Orue b, Pedro López-Aranguren b, Andrea Itziar Pitillas Martinez c, Maria Helena Braga d, Ville Kekkonen e
a AIT Austrian Institute of Technology GmbH, Center for Low-Emission Transport, Battery Technologies, Giefinggasse 2, 1210 Vienna, Austria
b Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Albert Einstein, 48, 01510, Vitoria-Gasteiz, Spain
c Avesta Battery & Energy Engineering (ABEE), Doorn Noordstraat 10, 9400 Ninove, Belgium
d University of Porto, Engineering Physics Department, Engineering Faculty, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
e Pulsedeon Oy, Piisilta 1, 91100 Ii, Finland
Proceedings of 24th International Conference on Solid State Ionics (SSI24)
Devices for a Net Zero World
London, United Kingdom, 2024 July 14th - 19th
Organizers: John Kilner and Stephen Skinner
Oral, Artur Tron, presentation 112
Publication date: 10th April 2024

The replacement of conventional lithium-ion batteries with solid-state batteries is currently being investigated by a large number of players in both the academic and industrial sectors [1]. Sulfide-based electrolytes are among the materials considered most promising, especially for applications in the transport field [2]. For this type of solid electrolyte, manually assembled cells such as Swagelok cells, EL-CELLs and self-built pressure vessels are typically used to evaluate the performance of the anode, cathode and solid electrolyte materials [3]. However, coin cells are often out of consideration. Although coin cells cannot accurately predict how a material will perform in a battery cell format in an end-use application, they are easy to assemble and can provide reproducible data in comparison to the other cell types, making them an interesting option for testing materials under conditions that are more relevant to the intended application. This round-robin test for the preparation of solid-state coin cell batteries with a solid sulfide electrolyte, a lithium nickel manganese cobalt oxide cathode and a lithium metal anode is intended for academic researchers and provides guidelines for research in this field. The cell preparation method presented in this work has been evaluated for its reproducibility and can be modified depending on the parameters used to optimize the solid electrolyte, the cathode material, the bilayer consisting of cathode and solid electrolyte, the lithium metal anode and the cell in general. Defined electrochemical tests of a sulfide solid-state battery in coin cell configuration are measured in a round-robin test between four laboratories (see Figure 1).

This project has received funding from the European Union's Horizon Europe programme for research and innovation under grant agreement No. 101069686 (PULSELION project). This work was supported by the financial support of the Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info