Deformation and Diffusion Mechanisms of Li-La-Ti-O with Ordered Microstructures Under Mechanical Stress
Wakako Araki a, Kiminori Saito b, Miao Wembo b, Yoshio Arai b
a Tokyo Institute of Technology, 2-12-1 Oookayama, Meguro-ku, Tokyo, Japan
b Saitama University, 255 Shimo-Okubo, Sakura, Saitama, 338, Japan
Proceedings of 24th International Conference on Solid State Ionics (SSI24)
Fundamentals: Experiment and simulation
London, United Kingdom, 2024 July 14th - 19th
Organizers: John Kilner and Stephen Skinner
Invited Speaker, Wakako Araki, presentation 082
Publication date: 10th April 2024

Li-La-Ti-O (LLTiO) is one of the promising electrolytes for all solid-state batteries, and a number of studies on LLTiO and related oxides have been reported in last decades. It has been known that LLTiO electrolyte has various ordered structures in different microscopic scales: LLTiO has an ordered crystal structure along the c-axis at the atomic scale, whilst there are microdomains composed of those ordered crystal structures. The ordering of microstructure significantly could affect the diffusion and mechanical properties of LLTiO. The present study based on ab-initio calculation and molecular dynamics elucidates the deformation behaviour and Li-ion diffusion mechanisms of LLTiO with various orderings of microstructure. In addition, the Li-ion diffusion behaviours under various conditions of mechanical stress are investigated. The microstructural analysis are performed and also the energy barrier for Li-migration is discussed, considering directional deformations and properties. The results reveal unique deformation and diffusion behaviors of LLTiO of ordered microstructures, which are attributed to different lattice deformations between La-poor and La-rich layers and over domain boundaries. 

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info