Publication date: 10th April 2024
Understanding the diffusion mechanisms in solid electrolytes is crucial for the advancement of solid-state batteries. Our study employs ab initio molecular dynamics to investigate structural disorder in Li7–xPS6–xBrx argyrodites and its impact on lithium-ion conductivity. We challenge the traditional reliance on parameters like configurational entropy, bromide site occupancy, and bromine content as predictors of Li-ion diffusivity.
Our analysis reveals that high conductivity is primarily achieved through an equal distribution of bromine and sulfur across the 4a and 4d sublattices, which optimizes jump activation energies, lithium-anion distances, and charge distribution for enhanced ionic transport.
We introduce "ionic potential" as a novel, overarching descriptor that quantifies cation-anion interaction strength, effectively predicting argyrodite conductivity and aligning with experimental observations across various compositions. We demonstrate that minimizing and balancing ionic potentials at both sublattices (4a and 4d) greatly enhances conductivity by reducing anion-Li-ion interaction forces.
Additionally, this research deconvolutes the impact of sulfur/halide local environments on jump activation energy, explaining the role of site disorder in activating low-energy ionic pathways and providing crucial insights for designing high-performance solid electrolytes.