Designing Highly Stable and Catalytic Oxygen Electrodes for Protonic Ceramic Electrochemical Cells Using High-Entropy Materials
Seeun Oh a, Dongyeon Kim a, Hyeonggeun Kim a, Kang Taek Lee a b
a Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea
b KAIST Graduate School of Green Growth and Sustainability, Daejeon, Republic of Korea
Proceedings of 24th International Conference on Solid State Ionics (SSI24)
Devices for a Net Zero World
London, United Kingdom, 2024 July 14th - 19th
Organizers: John Kilner and Stephen Skinner
Oral, Seeun Oh, presentation 046
Publication date: 10th April 2024

The global demand for sustainable and reliable energy sources has led to increased interest in technologies such as solid oxide electrochemical cells (SOECs), which reversibly generate electricity and hydrogen through chemical reactions. However, SOECs require high operating temperatures, posing material and cost challenges. Protonic ceramic electrochemical cells (PCECs), on the other hand, utilize protons as charge carriers and operate at lower temperatures (below 600°C) with higher efficiency due to their low activation energy. So far, triple ionic-and-electronic conductors (TIECs) have been extensively investigated for PCECs, introducing, and enhancing proton conductivity to the oxygen electrode, providing a larger space of active reaction sites for electrochemical reactions in the cell; however, challenges such as A-site cation segregation or inadequate chemical compatibility found in highly active Co-based materials still need to be addressed for practical application.  Recently, high-entropy materials have attracted attention to address these issues, exhibiting thermodynamically stable properties at high temperatures results from their high configurational entropy of the material. Here, we present recent progress in the development of high-entropy double perovskite oxide (HEDPO) oxygen electrodes for PCECs, incorporating high configurational entropy in the A-site of the structure to achieve superior material compatibility and stability while maintaining excellent electrocatalytic activity. This work paves the way towards robust and innovative oxygen electrodes for PCEC applications, contributing to the advancement of sustainable energy solutions.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info