Critique of critical and other materials in sustainable new battery chemistry developments
Emma Kendrick a
a University of Birmingham, United Kingdom
Proceedings of 24th International Conference on Solid State Ionics (SSI24)
Devices for a Net Zero World
London, United Kingdom, 2024 July 14th - 19th
Organizers: John Kilner and Stephen Skinner
Keynote, Emma Kendrick, presentation 012
Publication date: 10th April 2024

Critical materials are those which have a supply chain risk and are of high economic importance, this means that criticality is unique to each area of the globe, due to the sourcing of these different materials. In Europe, the critical materials list published in 2023 shows lithium, graphite, phosphate and phosphorous, silicon, cobalt and manganese, all classified as critical.1,2 Nickel is although, a strategic material, and with carcinogenic implications is not currently classified as critical. This assessment is dynamic due to changes in the sourcing, supply and also recycling levels of these important elements and materials. With the new battery passport and EU battery directive regulations, 50% of lithium recovery by 2027 and 80% by 2031 from spent lithium-ion batteries. SLI and EV batteries will require a recycled content of 16% for Co, 6% Li and 6% Ni, and recycling efficiency is 50% by 2025. Environmental and social impact needs to be understood throughout the life cycle of the battery, with supply chain due diligence. By 1st of Feb 2028, a full impact assessment of battery life cycle, or LCA must be supplied, including the recycled content sources.3,4

In this work the consideration of this impact is discussed, the assessment of criticality and the LCA for new battery technologies, and the development on new materials for lithium-ion and sodium-ion batteries.5,6 The circular economic approach to battery development is described, with advances in cathode developments and stability for improved manufacturability and recyclability.7–9 When developing new battery technologies, there's a chance to design in recycling from the start, rather than retrospectively, as is currently the case for lithium-ion batteries. Additionally, this presentation will explore design principles for creating a more sustainable battery technology, such as optimizing materials processing, electrode design, and properties that promote long-lasting performance and increased recovery efficiencies.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info