Proceedings of Online nanoGe Fall Meeting 20 (OnlineNFM20)
Publication date: 4th October 2020
Nanostructures on the base of lead, tin and copper chalcogenides with defined shape, dimensionality, faceting and surface chemistry are promising building blocks for opto-electronic devices in the near-infrared spectral range. A high degree of control has been already reached within main approaches for the dimensionality control: anisotropic growth, mesophase confined growth due to templating effect and oriented attachment. Here, we demonstrate several examples of fine-tuning of the shape and faceting of CuS, SnS and PbS quasi-two-dimensional structures with impact on electrical and optical properties. We also show synthetic details of the shape transformations combined with simulations which shed light onto the mechanism of the reached control. In case of PbS nanostripes and nanowires we show how the faceting of a nanocrystal dramatically changes its properties from semiconducting to metallic ones and analyze the reasons of the observed behavior.
References
Ramin Moayed, M. M., Kull, S., Rieckmann, A., Beck, P., Wagstaffe, M., Noei, H., ... & Klinke, C. (2020). Function Follows Form: From Semiconducting to Metallic toward Superconducting PbS Nanowires by Faceting the Crystal. Advanced Functional Materials, 30(19), 1910503.
Li, F., Moayed, M. M. R., Gerdes, F., Kull, S., Klein, E., Lesyuk, R., & Klinke, C. (2018). Colloidal tin sulfide nanosheets: formation mechanism, ligand-mediated shape tuning and photo-detection. Journal of Materials Chemistry C, 6(35), 9410-9419.
Li, F., Ramin Moayed, M. M., Klein, E., Lesyuk, R., & Klinke, C. (2019). In-plane anisotropic faceting of ultralarge and thin single-crystalline colloidal SnS nanosheets. The journal of physical chemistry letters, 10(5), 993-999.
Lesyuk, R., Klein, E., Yaremchuk, I., & Klinke, C. (2018). Copper sulfide nanosheets with shape-tunable plasmonic properties in the NIR region. Nanoscale, 10(44), 20640-20651.