Proceedings of Online International Conference on Hybrid and Organic Photovoltaics (OnlineHOPV20)
Publication date: 22nd May 2020
An emerging variant of metal halide perovskites, the 2D perovskites are gaining popularity due to their excellent stability. This arises due to the presence of bulky organic spacer cations which can block moisture and offer spatial confinement to the diffusion of ions through the inorganic [PbI6]4- octahedral network. This feature comes with a price as the bulky cations result in reduced and anisotropic charge transport in solar cells made of 2D perovskites, making them less efficient than their 3D counterparts.
Standard formulation developed in our lab involves Phenyl Ethyl Ammonium Iodide (PEAI) as large cation, Methyl ammonium iodide and Lead Iodide in a 2:4:5 molar ratio forming the perovskite layer (n = 5), together with the use of coordinating additives like NH4SCN (TC). This formulation gives us devices in the efficiency range 9 -11% with low hysteresis. However, short circuit current density (Jsc) in the range of 11 – 12 mA/cm2 and Fill factor (FF) in the range 65% – 70% strongly indicate problems related to charge carrier transport across the solar cell. To achieve seamless carrier transport in 2D perovskites a perfect vertical orientation of the [PbI6]4- octahedral cages with respect to the electrodes is desired.
We engineered the additive, by replacing TC with Thiosemicarbazide (TSC), due to its high coordination strength to lead, coming from the S-donor (which acts as a strong Lewis base). We replaced PEAI with 4F-PEAI (fluorine atom substituted at the para position of the phenyl ring), due to enhanced orbital interactions between inorganic layers. Both replacements are expected to help in templating preferred orientation of the perovskite sheets. The resulting solar cells outperformed our standard devices with 25% higher gains in efficiency. The Jsc is in the range 14.8 – 17.4 mA/cm2, to go with a FF of 73% -78%, a significant leap from our standard devices.