Proceedings of Online International Conference on Hybrid and Organic Photovoltaics (OnlineHOPV20)
DOI: https://doi.org/10.29363/nanoge.onlinehopv.2020.044
Publication date: 22nd May 2020
Perovskite photovoltaic technology can be scaled to large area modules and panels by using printing processes and laser pattering. In this talk we will present the progresses made to scale up from small area solar cells to modules and panels with dimension of 0.5 sqm. In particular we show the successful application of 2D materials, i.e., graphene [1], functionalized MoS2 [2] and MXenes[3], in perovskite solar modules (PSMs) and panels (PSPs) by interface engineering the standard mesoscopic n-i-p structure. The use of 2D materials has the dual role to improve both the stability and the overall power conversion efficiency (PCE) of the PSMs compared to standard devices. Moreover, 2D materials-based PSMs show reproducible performance over large module number and remarkable stability under prolonged thermal stress test at 85°C. By applying the 2D interface technology, we are able to fabricate large area modules (136 cm2 active area) with efficiency of 14.7%. Several 0.5 m2 panel panels were realized and tested in outdoor condition demonstrating a power conversion efficiency (PCE) exceeding 10% on active area.
[1] A. Agresti et al. ACS Energy Lett. 2019, 4, 8, 1862-1871
[2] L. Najafi et al ACS Nano 2018, 12, 11, 10736-10754
[3] A. Agresti, et al., Nature Materials volume 18, pages1228–1234(2019)