What Limits Efficiency in Organic Solar Cells at Negligible Energy Level Offsets?
Christoph Brabec a
a Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
International Conference on Hybrid and Organic Photovoltaics
Proceedings of Online International Conference on Hybrid and Organic Photovoltaics (OnlineHOPV20)
Online, Spain, 2020 May 26th - 29th
Organizers: Tracey Clarke, James Durrant, Annamaria Petrozza and Trystan Watson
Invited Speaker, Christoph Brabec, presentation 019
DOI: https://doi.org/10.29363/nanoge.onlinehopv.2020.019
Publication date: 22nd May 2020

The traditional concept for organic solar cells (OSC) suggests an offset in energy levels (Eoffset) to provide sufficient driving force to split excitons into free charge carriers. Eoffset is a most important Key performance Indicator (KPI), as a low Eoffset increases the open-circuit voltage (VOC), however, may also lead to a poor charge generation efficiency. Understand the factors limiting device operation at very small Eoffset is therefore of outmost importance. In this presentation we show that exciton splitting in highly efficient NFA systems at negligible EHOMO, offset still takes place, but on ultra-long timescales, even exceeding the exciton lifetime, which obviously becomes the ultimate limit for efficient systems. Moreover, we analyze the voltage losses and surprisingly, in systems where no charge transfer state is detected, we show that the non-radiative voltage losses still correlate with the small but non-negligible EHOMO offset until reaching the pristine materials´ limit.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info