Management of the Coulomb Interaction in Organic LEDs and Solar Cells
Richard Friend a
a Cavendish Laboratory, University of Cambridge - UK, JJ Thomson Avenue, 9, Cambridge, United Kingdom
International Conference on Hybrid and Organic Photovoltaics
Proceedings of Online International Conference on Hybrid and Organic Photovoltaics (OnlineHOPV20)
Online, Spain, 2020 May 26th - 29th
Organizers: Tracey Clarke, James Durrant, Annamaria Petrozza and Trystan Watson
Invited Speaker, Richard Friend, presentation 012
DOI: https://doi.org/10.29363/nanoge.onlinehopv.2020.012
Publication date: 22nd May 2020

Management of the Coulomb interaction in organic LEDs and solar cells

The physics of organic semiconductors is often controlled by large electron-hole Coulomb interactions and by large spin exchange energies. I will discuss recent strategies that allow these interactions to be harnessed for efficient device operation. For LEDs, 3:1 statistical formation of triplet:singlet excitons through electron-hole recombination limits efficiency if the triplet state is non-emissive, but is recovered for systems with reduced exchange energy and strong spin-orbit coupling in organo-metallic systems or for system where triplet-triplet collisions produce singlet excitons efficiently. We have recently demonstrated that π-conjugated radical materials with doublet ground states can operate with high efficiency in the doublet manifold. For organic PV systems, long-range charge separation from the donor-acceptor heterojunction must overcome a substantial Coulomb barrier, which we find always sets up a measurable optical Stark shift that we measure to be 200 meV or more. Whether this separation is ultrafast (sub-picosecond) or slow (>10 psec) depends on the ‘excess’ energy provided by the photogenerated exciton to the separating electron-hole pair, both for fullerene acceptor systems and those with non-fullerene acceptors. Longer time bimolecular recombination should show similar spin statistics to LED operation, causing significant non-radiative recombination for triplet formation where there is easy access to a low-lying localized triplet states. I will present evidence that though fullerene systems generally show rapid bimolecular triplet formation, this can process can be very strongly reduced in some non-fullerene acceptor systems.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info