Proceedings of Online International Conference on Hybrid and Organic Photovoltaics (OnlineHOPV20)
DOI: https://doi.org/10.29363/nanoge.onlinehopv.2020.005
Publication date: 22nd May 2020
Perovskite semiconductors demonstrate a large potential for commercial applications in single and multijunction solar cells, detectors or LEDs. A key for these applications is their highly fluorescent nature due to low defect densities and their simple processability from solution. However, complete devices suffer from losses to due non-radiative losses. This talk presents recent advances in understanding and suppressing non-radiative recombination in perovskite solar cells. Quantification of the quasi-Fermi level splitting through precise measurements of the photoluminescence quantum yield (PLQY) on perovskite films with and without attached charge transport layers pinpoint the origin of these recombination losses. These studies highlighted the role of interfacial recombination in limiting the internal voltage in the absorber layer [1-3]. By performing these measurements as function of light intensity allowed us to experimentally assess the efficiency potential of any neat perovskite film on glass, with or without attached transport layers [4]. We find that properly-passivated triple cation perovskite films exhibit exceptionally high implied PCEs >28%. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency towards the thermodynamic limit.