Publication date: 19th April 2024
Metal halide perovskite photodiodes have garnered extensive attention owing to their favorable optoelectronic properties, rendering them attractive for visible, near infrared and X-ray sensors. Due to this, they are being implemented in a wide range of applications such as as image sensing, optical communications, gesture recognition or biomedical sensing, amongst others.
However, their predominant reliance on solution-processing deposition techniques poses challenges for seamless integration into existing industrial processes, as they are often restricted to small area and use steps that are difficult to scale up, such as anti-solvent processing. Here, we address this limitation by developing fully vacuum-processed perovskite photodetectors with varying hole transport layers (HTL), that were characterized in the visible and X-ray spectrum. Our findings underscore the critical role of HTL selection in influencing the performance of the devices, in particular in the dark and noise current characteristics of the diodes. To optimize performance, we highlight the significance of minimizing the offset between the HTL transport level (its highest occupied molecular orbital, HOMO) and the perovskite valence band. With an optimized HTL, we obtain photodiodes with low noise current (~3·10-14 A·Hz-1/2) and high specific detectivity (~1012 Jones at 710 nm at -0.5 V). The perovskite photodiodes are also used to detect X-ray radiation up to 150kVp, resulting in an excellent linear response, for both high and low X-ray doses, with a sensitivity of 7.8 ± 0.6 µC/Gy/cm2 and a low limit of detection of 2.0 µG/s.