Publication date: 19th April 2024
In this study, we examine the use of perovskite photodetectors as a potential replacement for silicon photodiodes in modern cameras. Perovskite photodetectors have high sensitivity to visible light and can be integrated into existing electronics, but their use in CMOS image sensors requires the application of reverse bias. Unfortunately, this leads to unstable detector performance due to ion migration effects. To address this issue, we propose using forward voltage pulses to attenuate ion migration effects while still capturing photoresponse under reverse bias. To demonstrate the feasibility of this approach, we present a proof-of-concept single-pixel readout system that simulates the operation of a real image sensor. We show that applying forward bias pulses after each integration frame allows for stable operation of perovskite photodetectors for over 180 hours, whereas constant reverse bias leads to degradation of detector performance within 10 minutes. Additionally, we demonstrate stable imaging using the read-out with alternating voltage pulses and 8x8 cross-bar arrays of perovskite photodetectors. Our readout scheme is an important step towards the development of highly sensitive perovskite image sensors and cameras that are resistant to ion migration effects.