Mapping Out the Aqueous Surface Chemistry of Metal Oxide Nanocrystals; Carboxylate, Phosphonate and Catecholate Ligands
Loren Deblock a b, Eline Goossens a, Rohan Pokratath b, Klaartje De Buysser a, Jonathan De Roo b
a Ghent University (BE)
b University of Basel (CH)
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#ChemNano22. Chemistry of Nanomaterials
Online, Spain, 2022 March 7th - 11th
Organizers: Loredana Protesescu and Maksym Yarema
Contributed talk, Loren Deblock, presentation 357
DOI: https://doi.org/10.29363/nanoge.nsm.2022.357
Publication date: 7th February 2022

Iron oxide and hafnium oxide nanocrystals are two of the few successful examples of inorganic nanocrystals used in a clinical setting. Although crucial to their application, their aqueous surface chemistry is not fully understood. The literature contains conflicting reports regarding the optimum binding group. To alleviate these inconsistencies, we set out to systematically investigate the interaction of carboxylic acids, phosphonic acids and catechols to metal oxide nanocrystals in polar media. Here [1], we use Nuclear Magnetic Resonance spectroscopy and Dynamic Light Scattering to map out the pH-dependent binding affinity of the ligands towards hafnium oxide nanocrystals (an NMR compatible model system). Carboxylic acids easily desorb in water from the surface and only provide limited colloidal stability from pH 2 – 6. Phosphonic acids on the other hand provide colloidal stability over a broader pH range but also feature a pH-dependent desorption from the surface. They are most suited for acidic to neutral environments (pH < 8). Finally, nitrocatechol derivatives provide a tightly bound ligand shell and colloidal stability at physiological and basic pH (6-10). While dynamically bound ligands (carboxylates and phosphonates) do not provide colloidal stability in phosphate buffered saline, the tightly bound nitrocatechols provide long term stability. We thus shed light on the complex ligand binding dynamics on metal oxide nanocrystals in aqueous environments. Finally, we provide a practical colloidal stability map, guiding researchers to rationally design ligands for their desired application.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info