Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.322
Publication date: 7th February 2022
Colloidal InAs quantum dots (QDs) are considered as an infrared material candidate for many applications. Yet, there is not enough realization of the surface chemistry of these QDs. Here, 1H NMR has been used to analyze the surface chemistry of recently reported InAs QDs produced using In(I)Cl as both the reducing agent and the precursor. After exposing QDs surface to acids, we realize that Oleylammonium Chloride salt is removed from the surface, suggesting InAs QDs are terminated by Oleylamine used as the sole coordinating solvent and Cl anions. In fact, there is only a partial displacement between the initially present Oleylamine and the added acid. Comparison of initial and final concentrations of bound Oleylamine results an exchanged fraction of about 56% after titration with excess carboxylic acid. Furthermore, addition of excess alkylthiol proved to result in a similar ligand exchange process in which it binds as a thiolate together with the desorption of Oleylammonium Chloride salt proved by H NMR and X-ray Photoelectron Spectroscopy analyses.