Tin- Lead-metal halide perovskite solar cells with enhanced crystallinity, stability and efficiency by fluorinated long organic cation addition
Maria Antonietta Loi a
a Zernike Institute, University of Groningen, Groningen, Netherlands
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#TSPV22. Towards Stable Perovskite Photovoltaics
Online, Spain, 2022 March 7th - 11th
Organizers: Yana Vaynzof, Feng Gao and Zhuoying Chen
Invited Speaker, Maria Antonietta Loi, presentation 289
DOI: https://doi.org/10.29363/nanoge.nsm.2022.289
Publication date: 7th February 2022

Highly performing mixed Sn/Pb-perovskite solar cells (PSCs) are among the most promising options to reduce Pb content in perovskite devices and enable the fabrication of all-perovskite tandem solar cells owing to their reduced band gap. Here, I will show that the introduction of 2,3,4,5,6-pentafluorophenethylaminium cations in a perovskite active layer of composition (FASnI3)0.5(MAPbI3)0.5 enhances the crystallinity of the active layer, reduces the voltage losses and increases the material stability. The addition of the fluorinated cations allows the fabrication of highly oriented films with improved thermal stability. Moreover, the treated films exhibits merged grains with no evidence of 2D structures, which we believe leads to the passivation of trap states at the grain boundaries. Solar cells fabricated adding to the active layer the fluorinated cation display reduced trap-assisted recombination losses and lower background carrier density, which led to enhanced open-circuit voltage than the reference sample using phenethylammonium cations. The best perovskite solar cell showed an efficiency of 19.13%, with an open-circuit voltage of 0.84 V, which is substantially improved respect to the reference sample which exhibits 17.47% efficiency and 0.77 V as open-circuit voltage. More importantly, the fluorinated cations' addition help to improve the device's thermal stability, maintaining 90.3 % of its initial efficiency after 90 min of thermal stress at 85 C° in Nitrogen atmosphere.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info