Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.283
Publication date: 7th February 2022
Solution-processed all-perovskite tandem solar cells have the potential to surpass the efficiency limits for single-junction devices by using complementary ~1.8 eV and ~1.2 eV absorbers, thereby reducing thermalization and transmission losses. However, both absorber categories, mixed-halide wide-bandgap and lead-tin narrow-bandgap, suffer from significant non-radiative recombination losses that can limit the overall open-circuit voltage of the multijunction device. Additionally, the complex optical stack in a tandem device can introduce optical losses due to parasitic absorption and reflection of incident light. This work presents an integrated all-perovskite tandem where the sub-cells use surface passivation strategies to reduce non-radiative recombination at the perovskite-fullerene charge-selective interfaces, yielding a high open-circuit voltage. Further, by using optically benign transparent electrode and charge-selective layers, the external quantum efficiency in the narrow-bandgap sub-cell is improved leading to reduced current-mismatch between sub-cells. Cumulatively, these strategies allow the development of a monolithic tandem solar cell exhibiting a power-conversion efficiency of over 23%.