Perovskite - a wonder material for X-ray detection
Shengzhong Liu a b
a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
b Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#PeroSolarFab22. Perovskite solar cells: on the way from the lab to fab
Online, Spain, 2022 March 7th - 11th
Organizers: Yulia Galagan, Eugene Katz and Pavel Troshin
Invited Speaker, Shengzhong Liu, presentation 271
DOI: https://doi.org/10.29363/nanoge.nsm.2022.271
Publication date: 7th February 2022

Ion migration is a well-known problem in perovskite materials. It causes baseline drift, lowers imaging resolution, accelerated decomposition and device performance degradation. In particular in X-ray detectors, the effect of ion migration is more obvious under working bias. The first principals study reveals that the 0D structure perovskite would show effectively reduced ion migration between neighbouring unit cells compared with the popular 2D and 3D perovskites. A nucleation-controlled strategy is developed to grow superior inch-sized high-quality 0D-structured lead-free (CH3NH3)3Bi2I9 perovskite single crystals (MA3Bi2I9 PSCs) with significantly lower ion migration, much reduced dark current and better environmental stability compared to other perovskite materials, enabling us to design and fabricate a new type of 0D-structured lead-free perovskite X-ray detector. It is found that the X-ray detectors show surprisingly high sensitivity, 15 times more than that of the state-of-the-art commercial α-Se detectors, with very low detection limit that is desired for medical diagnostics, material inspection, etc. Furthermore, their response time is as short as 0.98 ms, the shortest among all X-ray detectors reported in literature, which may allow us to develop an X-ray screening system with reduced X-ray dose and improved resolution.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info