Revealing intrinsic and extrinsic photochemical aging pathways in organic absorber molecules
Pavel Troshin a
a Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#StEffOPV22. Novel concepts for highly stable and efficient organic solar cells
Online, Spain, 2022 March 7th - 11th
Organizers: Vida Engmann, Morten Madsen and Jeff Kettle
Invited Speaker, Pavel Troshin, presentation 261
DOI: https://doi.org/10.29363/nanoge.nsm.2022.261
Publication date: 7th February 2022

In the view of a rapid increase in efficiency of organic solar cells, reaching their long-term operational stability represents one of the main challenges to be addressed on the way toward commercialization of this photovoltaic technology. However, intrinsic degradation pathways occurring in organic solar cells under realistic operational conditions remain poorly understood. The light-induced dimerization of fullerene-based acceptor materials discovered recently is considered to be one of the main causes for burn-in degradation of organic solar cells. In this work, we reveal the mechanism of the light-induced dimerization of the fullerene derivatives and establish important correlations with their molecular structure and electronic properties.

We also show that conjugated polymers and small molecules undergo similar light-induced crosslinking regardless of their chemical composition and structure. In case of conjugated polymers, crosslinking leads to a rapid increase in their molecular weight and consequent loss of solubility, which can be revealed in a straightforward way by gel permeation chromatography analysis via a reduction/loss of signal and/or smaller retention times.

Our results, thus, shift the paradigm of research in the field toward designing a new generation of organic absorbers with enhanced intrinsic photochemical stability in order to reach practically useful operation lifetimes required for successful commercialization of organic photovoltaics.

Support from EU’s Horizon 2020 ERA-Chair project ExCEED, grant agreement No 952008, is acknowledged

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info