Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.249
Publication date: 7th February 2022
Processes taking place at contacts are of particular importance in organic and perovskite solar cells where selective contacts that can efficiently collect majority carriers, simultaneously blocking minority carriers are desired. The surface recombination velocity SR is a key-parameter in describing the dynamic processes at interfaces.
We have extended the analytical framework of the charge extraction by linearly increasing voltage (CELIV) theory taking the effect of built-in voltage, diffusion and band-bending into account [1-4]. By doing so we have been able to extend the CELIV into obtaining new regimes, namely for metal-insulator-metal structures, doped semiconductors and for metal-insulator-semiconductor structures. We have used the new regimes of CELIV as in-device characterization techniques to clarify important device physical parameters. We have derived analytical expressions describing the effective reduction of the built-in voltage, the (effective) open-circuit voltage providing means to quantify and distinguish various loss-mechanisms occurring at contacts in thin-film solar cells.
We show how to use CELIV to directly determine surface recombination velocities at selective and/or blocking contacts in thin-film devices, allowing us to directly estimating the dynamics at selective contacts.
Partial financial support from the Jane and Aatos Erkko foundation through the ASPIRE project is acknowledged.