Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.246
Publication date: 7th February 2022
The development of industrial-scale, reliable, inexpensive production processes of graphene and related two-dimensional materials (GRMs)[1,2] is a key requirement for their widespread use in several application areas,[1-6] providing a balance between ease of fabrication and final product quality. In particular, in the energy sector, the production of GRMs in liquid phase [2,6] represents a simple and cost-effective pathway towards the development of GRMs-based energy devices, presenting huge integration flexibility compared to other production methods.
In this presentation, I will first briefly introduce the key properties of GRMs. Then, I will present the strategy of BeDimensional in the production of GRMs by wet-jet milling [7] and the Industrial scale up. Afterward, I will provide a brief overview on some key applications of the as-produced GRMs, for anticorrosion coatings and energy conversion and storage devices. [3,8-16]
REFERENCES:
[1] F. Bonaccorso, et. al., Adv. Mater. 28, 6136-6166 (2016).
[2] F. Bonaccorso, et al., Materials Today, 15, 564-589, (2012).
[3] F. Bonaccorso, et. al., Nature Photonics 4, 611-622, (2010).
[4] E. Pomerantseva, F. Bonaccorso, et al., Science 366 (6468) eaan8285 (2019).
[5] G. Iannaccone F. Bonaccorso, et al., Nature Nanotech 13, 183, (2018).
[6] A. C. Ferrari, F. Bonaccorso, et al., Nanoscale, 7, 4598-4810 (2015).
[7] A. E. Del Rio Castillo et. al., Mater. Horiz. 5, 890 (2018).
[8] F. Bonaccorso, et. al., Science, 347, 1246501 (2015).
[9] L. Najafi et al., Advanced Energy Materials 8 (16), 1703212 (2018).
[10] E. Lamanna et al., Joule 4, 865-881 (2020).
[11] S. Bellani, et al., Chem. Soc. Rev. DOI: 10.1039/D1CS00106J (2021)
[12] M. Garakani, et al. Energy Storage Materials 34, 1-11 (2020).
[13] S. Bellani, et al. Nano Lett. 18, 7155-7164 (2018).
[14] A. E. Del Rio Castillo, et al., Chem. Mater. 30, 506-516 (2018).
[15] S. Bellani, et al. Nanoscale Horizons 4, 1077 (2019).
[16] S. Bellani, et al. Adv. Funct. Mater. 29, 1807659 (2019).
"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement GrapheneCore3 - 881603"