Probing Hybrid Structures Across the Length Scales with Synchrotron-based X-rays Methods
Dorota Koziej a b
a Center for Hybrid Nanostructures, Institute for Nanostructure and Solid State Physics, University of Hamburg, Germany
b The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#AdvMatSyn22. Advanced Materials Synthesis, Characterization, and Theory: for the Green Energy Leap
Online, Spain, 2022 March 7th - 11th
Organizer: Francesca Toma
Invited Speaker, Dorota Koziej, presentation 242
DOI: https://doi.org/10.29363/nanoge.nsm.2022.242
Publication date: 7th February 2022

Over the past years we have developed various approaches to fabricate materials with sophisticated chemical and structural complexity. We have focused on synthesis in non-aqueous solution since this approach is not limited to one particular class of materials. Thus, it gives us flexibility to tailor the composition and properties of materials in respect to the application, for examples carbon dioxide sensors and photo-electrochemical devices.

In this talk, I will present how X-ray synchrotron methods, far from merely providing new tools, are extending the ways we study, understand and design such complex structures. A combination of spectroscopic, scattering and microscopic X-ray methods and rapid data acquisition help to uncover the complex chemical world behind the synthesis of functional materials. It gives complementary information about chemical reaction in solution and nucleation, growth and crystal phase transition of nanoparticles. [1-4] Moreover, on the selected examples, I will discuss how the possibility to select with high-energy resolution the incident and emission hard X-ray energies offers unprecedented site selectivity and give access to determine structure – function relationship of photo-, electroactive materials and devices. [5-6] Finally, will discuss the advantages and the pitfalls of the synchrotron methods for in situ and operando studies.

This work was supported by the European Research Council within the project LINCHPIN (grant no. 818941), by the Bundesministerium für Bildung und Forschung (BMBF) via project LUCENT (grant no. 05K19WMA) the Cluster of Excellence “CUI: Advanced Imaging of Matter” of the Deutsche Forschungsgemeinschaft (DFG) - EXC 2056 - project ID 390715994, and by GRK 2536 NANOHYBRID of the DFG.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info