Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.240
Publication date: 7th February 2022
Optical and electronic properties of metal oxide nanocrystals (MO NCs) strongly depend on the presence of depletion layers derived from the presence of surface states. In addition, MO NCs exhibit a localized surface plasmon resonance (LSPR), offering tunable features enabled by doping, both via electrochemical or photochemical charging. [1] Dynamic control over the LSPR makes MO NCs promising in optoelectronics and storage devices. [2] By manipulating the NCs depletion layer, it is possible to control their electronic properties. However, the mechanism behind this phenomenon is very complex, and not yet fully understood. [3] In particular, the tuning of several parameters, including the material under consideration, the size of the NCs, and the presence of multiple core-shell systems, enable the depletion layer engineering. To do this, it is possible to calculate the band and carrier density profiles for NCs with different features. In this work, a new framework has been introduced that can predict the behavior and physics under the MO NC photodoping process, revealing that the charging mechanism is unexpectedly based on the electronic rearrangement of the energy bands. Numerical simulations were experimentally supported by studying the case of a core-shell structure of Sn:In2O3/In2O3 NCs, by tuning the thickness of the shell, as well as post-synthetically, both by photodoping and reversible chemical reactions. The engineering of the depletion layer and the consequent manipulation of the electronic structure allows to significantly increase the sensitivity of LSPR and to target specific properties in MO NCs. The fine-tuning of the NCs band structure has enabled an improvement in charge storage capacity, which represents a step towards fully light-driven energy storage devices.