Towards Industrialization of PK/Si 2-Terminal Tandem Solar Cells: Scale up and Integration Into Established Process Flows
Brett Kamino a
a PV Center, CSEM
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#PMSC22. Perovskite-based multijunction solar cells
Online, Spain, 2022 March 7th - 11th
Organizers: Stefaan De Wolf and Steve Albrecht
Invited Speaker, Brett Kamino, presentation 239
DOI: https://doi.org/10.29363/nanoge.nsm.2022.239
Publication date: 7th February 2022

As the efficiency of 2-terminal PK/Si tandem devices continues to increase towards 30% in the laboratory, the question of manufacturability of these devices must be addressed. This is important as the efficiency gap between what is being currently made in laboratory and what is possible using more scalable methods and materials is a critical issue for the future of this technology. Specifically, the integration of these devices into established PV process flows must be investigated to understand where adaption is possible and where new processes must be made. To this end, we present a proposed process flow for the fabrication of large area 2-terminal PK/Si tandems based on a heterojunction bottom cell. Methods to adapt chemical etch, metallization, and encapsulation are presented. Additionally, a high throughput meniscus coating approach for the perovskite layer will be demonstrated and the integration challenges discussed. Using this process flow, we demonstrate that PK/Si tandem solar cells based on commercially available CZ M2 wafers can be fabrication with efficiencies of over 22% on an active area of 100 cm2.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info