Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.234
Publication date: 7th February 2022
The recent advances in the colloidal synthesis of strongly emitting lead halide perovskite nanocrystals (NCs) with precise size and composition control open new possibilities for the fabrication of optoelectronic devices. Yet, the physics of the band-edge exciton fine structure of perovskites is still a subject of discussion [1], despite its central impact on the optical properties of these materials and therefore on their potential use in various applications, especially as quantum light sources. At cryogenic temperatures, we show that single cesium lead halide (CsPbX3) perovskite NCs display bright photoluminescence even though their band-edge exciton fine structure presents a dark ground singlet state. We introduce resonant PL excitation of the excitonic sublevels to investigate the indistinguishability character of the photons emitted by these NCs. Importantly, we demonstrate that the presence of a long-lived ground exciton state favors the formation of biexcitons and thus the emission of pairs of correlated photons. We show that this is a general behavior that can be observed for perovskite NCs as well as for conventional CdSe quantum dots. This property makes single CsPbI3 NCs versatile bright, quantum light sources with photon statistics that can be tuned from bunching to antibunching, using magnetic coupling or thermal mixing between dark and bright exciton states [2].
Finally, I’ll describe a recent study [3] of the photophysical properties of copper indium sulfide quantum dots which are emerging as promising alternatives to cadmium- and lead-based chalcogenides systems in various applications and for which the nature of the emission pathways remains a subject of debate.