Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.210
Publication date: 7th February 2022
Lead-halide perovskite (LHP) thin-films and nanocrystals have advanced to the forefront of materials research for a wide array of applications from solar-cells and related optoelectronic devices, near unity quantum yield light sources, to coherent single-photon emitters for quantum information processing. Electron-phonon coupling (EP-coupling) plays a critical role in LHPs, proposed to both enhance performance metrics in some cases, e.g. ‘polaronic protection’ of charge carriers, and limit them in others, e.g. exciton coherence loss and broadened emission in perovskite nanocrystals. At the root of EP-coupling is a shift of the equilibrium atomic coordinates of the atoms in a material, a lattice reorganization, upon a change of the electronic configuration. While various time-resolved spectroscopies have shed light on the phonons involved, the nature of the lattice reorganization, and therefore the mechanisms underlaying EP-coupling in LHPs, remains unclear. Valuable insight can be provided through physical characterization of the inherent excited-states structural dynamics of these materials. In principle, EP-coupling-driven lattice reorganizations can be directly measured through time resolved diffraction, and NCs are an attractive system to probe these dynamics. Here, we perform femtosecond-resolved optical pump diffraction probe measurements to quantify the suprisingly large lattice reorganization occurring as a result of exciton-phonon coupling to the interband transition in formamidinium-lead-bromide (FAPbBr3, FA = CH5N2) NCs. A variety of Ab Intio techniques coupled with modelling are employed to understand the observed effect. Our findings provide an intuitive explanation for the origin of lower energy optical phonon coupling, and provide insight into both the excited state and equilibrium structure of LHPs.