Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.208
Publication date: 7th February 2022
In a molecular photovoltaic device, charge separation and energy conversion result from the evolution of a photogenerated exciton into a charge separated state, in competition with recombination to ground. The efficiency of charge separation is a function of the molecular packing and energy level alignment near the interface, and of disorder in these properties. We need to understand and isolate the effects of chemical structure, molecular packing, energetics and disorder on the competition between charge separation and recombination in order to identify the factors controlling device efficiency. Electro- and photo-luminescence have proved to be valuable tools to probe the energy and dynamics of excited states involved in photoinduced charge separation, and to identify structural and energetic disorder at molecular interfaces. Here, we use luminescence and other spectroscopic probes along with transient electrical measurements to study charge generation and photovoltage in molecular donor: acceptor solar cells. We explore how the properties of the intermediate charge-transfer state influence recombination losses and show, with the aid of a numerical models how control of these molecular properties could benefit performance [1]. We study the effect of hybridisation of charge-transfer and local exciton states [2] and of disorder in CT state energies [3] on non-radiative voltage losses. We then develop an integrated modeling framework in which excited state dynamics are combined with a one-dimensional device model that accounts for spatial variations in charge density. The integrated model allows different experimental measurements to be reconciled within a single picture and helps to show how the energies and dynamics of interfacial states influnce the overall device performance. We use our results to consider the ultimate limitations placed on solar to electric conversion by the molecular nature of the materials.