Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.176
Publication date: 7th February 2022
Organic photovoltaics have been developed in the concept of bulk heterojunctions (BHJs) by blending donor and acceptor materials because of the short exciton diffusion length of classic organic semiconductors. While non-fullerene acceptors (NFAs) have recently demonstrated long-range exciton diffusion, most of studies focus yet on blended polymer:NFA systems. Here, we calculate the long exciton diffusion length of a NFA (~40 nm) by ultrafast spectroscopy measurements and fabricate NFA/polymer planar heterojunctions (PHJs) as a function of the thickness of the NFA. From thick to thin NFA layer, close to the exciton diffusion length of the NFA, additional hole transfer and photocurrent was observed, indicating that more excitons created away from the NFA/polymer interface can diffuse to the interface. Field-dependent charge generation is observed by exciton diffusion from the neat NFA. Further, due to smaller acceptor/donor interfacial area, the PHJ devices exhibit less bimolecular recombination losses and suppressed dark leakage current than the corresponding BHJ device. By employing the NFA/polymer PHJ to photodetectors, we demonstrate 3.6 times higher detectivity at -2 V bias than that of the BHJ photodetector.