Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.157
Publication date: 7th February 2022
The efficient harvesting and subsequent storage of solar radiation is now becoming one the main challenges for the development of clean and sustainable energy sources. The ever increasing demand to reduce the usage of rare and toxic materials as well as the need to overcome current limitations in solar energy storage calls for environmentally-friendly approaches based on completely new concepts. In this context, hybrid inorganic/organic nanosystems employing metal oxides nanocrystals (MO NCs) and graphene quantum dots (GQDs) are emerging as potential candidates for both harvesting and storage of solar radiation due to the ability of MO NCs to accumulate electrons upon UV light absorption.[1] Here, by means of chemical titration combined with optical spectroscopic tools we investigate the possibility for efficient multiple charge transfers in this type of hybrid nanosystems. Exploiting multiple charge transfer processes together with the combination of energy conversion and storage in a single set of materials will open new routes toward the development of efficient and compact light driven energy storage devices.