Engineering approaches to enhance the efficiency and stability of perovskite solar cells
Zhelu Hu a, Lionel Aigouy a, Zhuoying Chen a
a Laboratoire de Physique et d'Étude des matériaux (LPEM, UMR 8213), ESPCI Paris, PSL University, CNRS, Sorbonne University, 10 Rue Vauquelin, 75005 Paris, France
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#TSPV22. Towards Stable Perovskite Photovoltaics
Online, Spain, 2022 March 7th - 11th
Organizers: Yana Vaynzof, Feng Gao and Zhuoying Chen
Contributed talk, Zhelu Hu, presentation 152
DOI: https://doi.org/10.29363/nanoge.nsm.2022.152
Publication date: 7th February 2022

Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted much attention due to their high power conversion efficiency (>25%) and low-cost fabrication. Yet, improvements are still needed for more stable and higher performing solar cells. In this presentation, three engineering approaches are proposed to enhance the photovoltaic efficiency and stability of PSCs: (1) On the first method, a series of highly oriented vertical TiO2 nanocolumn electron-transporting photonic structures were intentionally fabricated on half of the compact TiO2-coated fluorine-doped tin oxide substrate by glancing angle deposition with magnetron sputtering. These vertically aligned nanocolumn arrays were then applied as the electron transport layer into triple-cation lead halide perovskite solar cells based on Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3. (2) On the second method, we investigated the effect of removing the excess PbI2 at the interface between the triple-cation Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 perovskite and the Spiro-OMETAD hole-transport layer. For this purpose, four different organic salts, including methylammonium iodide (MAI), formamidinium iodide (FAI),  methylammonium bromide (MABr) and methylammonium chloride (MACl) were applied and compared. (3) The last aspect that will be presented involves the application of the downshifting optical property of colloidal carbon quantum dots to enhance the stability of perovskite solar cells against UV degradation.

On the above-mentioned engineering methods, different characterization methods, including far-field and near-field optical experiments, structural and spectroscopic investigations, impedance spectroscopy, together with solar cell efficiency and in  particular device stability measurements are presented together in order to understand the underlying origins of the efficiency and stability enhancement observed in triple-cation perovskite solar cells.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info