Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.142
Publication date: 7th February 2022
Hybrid perovskite photovoltaic devices have rapidly emerged as promising contenders for next generation, low-cost solar cell technology. Yet, the presence of defect states critically impacts device operation, including device efficiency and potentially long-term stability. Understanding the nature of these defects and their role in photocarrier trapping, requires techniques that are capable of probing ultrafast photocarrier dynamics at the nanoscale.
In this talk, I will discuss the development of time-resolved photoemission electron microscopy (TR PEEM) techniques in my lab [1], [2], applied to hybrid perovskite solar materials. Thereby, we directly visualize the presence of the performance limiting nanoscale defect clusters and elucidate the role of diffusion in the charge carrier trapping process [3]. By correlating PEEM measurements with other spatially resolved microscopies, we identify different types of defects that form, and study how passivation strategies may have a varied impact on them [4].