How delocalisation enhances transport and charge separation in organic semiconductors
Ivan Kassal a
a The University of Sydney, Australia
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#OrgCD22. Charge Dynamics of State-of-the-art Organic Solar Cells
Online, Spain, 2022 March 7th - 11th
Organizers: Ardalan Armin and Safa Shoaee
Invited Speaker, Ivan Kassal, presentation 141
DOI: https://doi.org/10.29363/nanoge.nsm.2022.141
Publication date: 7th February 2022

The transport of charges and excitons is well understood in two extremes: in highly ordered materials, transport is by band conduction, while in highly disordered ones, it is by hopping. Many organic semiconductors fall in the intermediate regime between band transport and hopping, making either set of approximations inaccurate. In particular, intermolecular couplings mean that there is usually some delocalisation across multiple molecules (or segments of polymers), while disorder ensures that this effect is spatially limited. Theoretically describing the movement of partially delocalised carriers and excitons is difficult, because it depends on a complicated interplay of energetic disorder, quantum-mechanical couplings, and polaron formation.

We report delocalised kinetic Monte Carlo (dKMC), a new computational method that is able to describe the motion of partially delocalised charges and excitons in all regimes of disorder [1]. We implement numerical innovations that allow us to work in three dimensions, a regime that had proven too complicated for all comparable approaches. dKMC reveals new, basic physics of transport in organic semiconductors and explain why mobilities predicted by traditional kinetic Monte Carlo are usually too low. In particular, delocalisation over just a few molecules can increase mobilities by orders of magnitude.

We also extend dKMC to describe charge separation at a heterojunction [2], the first approach to do so that includes all the necessary ingredients: delocalisation, disorder, and polaron formation. We show that delocalisation can play a decisive role in charge separation, with even modest delocalisation able to double internal quantum efficiencies.

[1] Balzer, Smolders, Blyth, Hood, and Kassal, Chem. Sci. 12, 2276 (2021).
[2] Balzer and Kassal, arXiv:2108.05032 (2021).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info