Enhanced device stability in polymer:non-fullerene acceptor based organic solar cells with sputter-deposited TiO2 films as electron transport layers
Mariam Ahmad a, Mehrad Ahmadpour a, Nadine Witkowski b, Morten Madsen a
a SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg DK-6400, Denmark
b Sorbonne Université, UMR CNRS 7588, Institut des Nanosciences de Paris, F-75005 Paris, France
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#StEffOPV22. Novel concepts for highly stable and efficient organic solar cells
Online, Spain, 2022 March 7th - 11th
Organizers: Vida Engmann, Morten Madsen and Jeff Kettle
Contributed talk, Mariam Ahmad, presentation 139
DOI: https://doi.org/10.29363/nanoge.nsm.2022.139
Publication date: 7th February 2022

The transition from fullerene to non-fullerene acceptors (NFAs) has dramatically increased the power conversion efficiency of organic solar cells and re-ignited the interest in these devices. Even though, the efficiency of NFA based devices has surpassed 18 % [1], these devices are still challenged by poor device stability. It has been shown, that the popular electron transport layer (ETL), ZnO, causes a photoinduced degradation of the NFA molecule ITIC, which contributes to a poor device stability under continuous light soaking in PCE12:ITIC devices with ZnO as an ETL [2]. Recently, we have shown that replacing ZnO with sputtered TiOx increases the device stability of high performing PCE12: ITIC devices significantly [3], when the sputtered TiOx is optimized in terms of composition and microstructure. Photoemission and spectrophotometry measurements have shown that the sputtered TiOx films possess less surface defects, which to a large extend mitigates the photoinduced degradation of ITIC as opposed to conventional ZnO ETLs. To better understand the mechanisms behind the improved stability of devices that are based on the sputtered TiOx, electronic structure and the full energy level alignment between TiOx (ETL) and ITIC (NFA) has been studied using synchrotron-based X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and resonant X-ray photoelectron spectroscopy to uncover any charge transfer, chemical bonding, trap states and interfacial states at the ETL/acceptor interface. These results will be presented during this talk.

 

[1] Q. Liu et al. 18 % efficiency organic solar cells, Science Bulletin, 65, 272-275, (2020).

[2] S. Park et al. Intrinsic photo-degradation and mechanism of polymer solar cells: the crucial role of non-fullerene acceptors, J. Mater. Chem. A., 7, 25830-25837, (2019).

[3] M. Ahmadpour et al., in preparation, (2021).

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info