Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.139
Publication date: 7th February 2022
The transition from fullerene to non-fullerene acceptors (NFAs) has dramatically increased the power conversion efficiency of organic solar cells and re-ignited the interest in these devices. Even though, the efficiency of NFA based devices has surpassed 18 % [1], these devices are still challenged by poor device stability. It has been shown, that the popular electron transport layer (ETL), ZnO, causes a photoinduced degradation of the NFA molecule ITIC, which contributes to a poor device stability under continuous light soaking in PCE12:ITIC devices with ZnO as an ETL [2]. Recently, we have shown that replacing ZnO with sputtered TiOx increases the device stability of high performing PCE12: ITIC devices significantly [3], when the sputtered TiOx is optimized in terms of composition and microstructure. Photoemission and spectrophotometry measurements have shown that the sputtered TiOx films possess less surface defects, which to a large extend mitigates the photoinduced degradation of ITIC as opposed to conventional ZnO ETLs. To better understand the mechanisms behind the improved stability of devices that are based on the sputtered TiOx, electronic structure and the full energy level alignment between TiOx (ETL) and ITIC (NFA) has been studied using synchrotron-based X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and resonant X-ray photoelectron spectroscopy to uncover any charge transfer, chemical bonding, trap states and interfacial states at the ETL/acceptor interface. These results will be presented during this talk.
[1] Q. Liu et al. 18 % efficiency organic solar cells, Science Bulletin, 65, 272-275, (2020).
[2] S. Park et al. Intrinsic photo-degradation and mechanism of polymer solar cells: the crucial role of non-fullerene acceptors, J. Mater. Chem. A., 7, 25830-25837, (2019).
[3] M. Ahmadpour et al., in preparation, (2021).