Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.131
Publication date: 7th February 2022
Herein the morphology and exciton/charge carrier dynamics in bulk heterojunctions (BHJs) of various donor polymers and molecular acceptors are investigated. The impact of polymer-NFA blend composition upon morphology, energetics, charge carrier recombination kinetics, and photocurrent properties are studied. By changing film composition, morphological structures are varied from consisting of highly intermixed polymer-NFA phases to consisting of both intermixed and pure phase. Transient absorption spectroscopy reveals the importance of an energetic cascade between mixed and pure phases in the electron–hole dynamics in order to well separate spatially localized electron–hole pairs. It appears that the increase in NFA electron affinity in pure phases relative to mixed phases is correlated with a transition from a relatively planar backbone structure of NFA in pure, aggregated phases, to a more twisted structure in molecularly mixed phases. For high crystalline blends, transient absorption data indicate exciton separation leads to the formation of two spectrally distinct species, assigned to interfacial charge transfer (CT) states and separated charges. CT state decay is correlated with the appearance of additional separate charges, indicating relatively efficient CT state dissociation, attributed to the high crystallinity of this blend. The results emphasize the potential for high material crystallinity to enhance charge separation and collection in OSCs, but also that long exciton diffusion lengths are likely to be essential for efficient exciton separation in such high crystallinity devices.