ITO NCs photodoping enabling multiple charge processes
Andrea Rubino a, Michele Ghini a, Andrea Camellini a, Ilka Kriegel a
a Istituto Italiano di Tecnologia, Via Morego 30, 16163. Genova, Italy
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#MEMP22. Multi-electron Molecular Photocatalysts
Online, Spain, 2022 March 7th - 11th
Organizers: Nathan Neale and Natalia Shustova
Contributed talk, Andrea Rubino, presentation 094
DOI: https://doi.org/10.29363/nanoge.nsm.2022.094
Publication date: 7th February 2022

Transparent conductive oxides are well-known inorganic materials that have found wide use in various fields of both research and industry. In particular, doped metal oxides have aroused great interest in power generation applications thanks to a very convenient combination of optical and electronic properties. To the effective absorption of light usually in the ultraviolet frequency range and to the typical optical transparency window in the visible, a tunable feature is added that enriches the versatility of these materials. It is the plasmon resonance in the infrared. This property is the result of the aliovalent doping of the oxide, which induces the typical conductive character thanks to the excess of extrinsic charges [1]. Further advantages in terms of preparation, costs and applications derive from processing in the nanoscale and, among the nanocrystalline forms of these oxides, one of the most widely used species is indium tin oxide (ITO) [2]. More recently, the possibility of a further increase in charge density through a zero environmental impact post-synthetic treatment has renewed the attraction for these materials and intensified their study. Many metal oxides nanocrystals have in fact demonstrated an exponential increase in charges through photo-doping induced by multiple events of light absorption [3]. This phenomenon encourages even more the use of these semiconductors in the field of solar energy conversion, but also in related fields such as photoelectrochemistry and photocatalysis. In each of these applications, one of the most current research lines in fact concerns the analysis of the multiple charges accumulated in the light-driven process and the possibility of accessing processes involving multiple charge transfers [4]. The consequences would concern both the increase in efficiency and the widening of the application window of these materials. In this work,[5] we report a first evidence, in the case of photodoped ITO nanocrystals, of the possible transfer process of more than one electron by means of a gradual oxidative treatment using an electron-acceptor molecule, the F4TCNQ. The spectroscopic analysis of the titration allows shedding light on the reactivity of the nanocrystals induced by light and on the potential transfer of multiple charges.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info