Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.090
Publication date: 7th February 2022
Tandem solar cells based entirely on thin-film metal halide perovskite absorbers hold the potential of high efficiencies at low cost and large flexibility.[1] Prototypes of such technology have been fabricated successfully, and efficiencies exceeding 26% have been reached.[2] However, compared to the more established combination of metal halide perovskite top cells with high-efficiency silicon bottom cells, the performance potential and limitations of all-perovskite tandems are less explored. One major difference with respect to the perovskite-silicon reference is the relevance of wave optical effects and of photon recycling for both, top and bottom absorbers. Hence, the optical coupling of the subcells needs to be considered rigorously in a simulation-based assessment of the performance potential.
Here, we present an extension of our recently introduced model for photon recycling in thin-film perovskite absorbers[3] to the situation of all-perovskite tandem solar cells, including a consistent consideration of luminescent coupling due to re-absorption in the bottom perovskite cell of the light emitted by the top perovskite absorber. The impact of photon-recycling and luminescent coupling on the photovoltaic device performance is assessed in the limit of ideal transport – using detailed balance – and under consideration of realistic charge transport based on a drift-diffusion model. The latter includes also losses due to both non-idealities in the subcell connection via the recombination junction and non-radiative recombination in the bulk and at interfaces.
This fully coupled optoelectronic approach enables an in-depth analysis of subcell performance issues and their propagation to the performance of the tandem device.[4]