Proceedings of nanoGe Spring Meeting 2022 (NSM22)
DOI: https://doi.org/10.29363/nanoge.nsm.2022.089
Publication date: 7th February 2022
Implementation of 2D materials in organic photovoltaic (OPV) cells has emerged as a promising route to modify fundamental device properties, and potentially improve device efficiency and stability. Recently, the 2D material MXene has attracted huge attention and demonstrated a large potential for next-generation solar cells due to exciting optical and electronic properties, and especially the ability to tune work function via surfaces termination routes which is highly desirable in OPV device interlayers. In this work, we employ such 2D MXene, Ti3C2Tx, in conventional ETL to develop composite 2D based electron transport layers (2D-ETL), and demonstrate their high performance for non-fullerene acceptor (NFA) based inverted OPV processed with the non-halogenated solvent o-xylene. The PM6:N3 OPV based on the composite 2D-ETL exhibited power conversion efficiencies (PCE) of around 14%, and importantly, a superior device lifetime when compared to conventional 2D-free ETL. In this work, the integration of such 2D interlayers in 2D-ETL is investigated in terms of morphology and optical as well as electrical properties, while the degradation and stability mechanisms are studied by optical spectroscopy techniques and ISOS-L device lifetimes measurements. Here, the usage of 2D MXene is shown to possess a great potential for the development of ambient stable and efficient flexible NFA OPV devices in the future.