Efficiency-limiting Processes in Non-Fullerene Based Organic Solar Cells
Carsten Deibel a, Maria Saladina a, Christopher Wöpke a, Olaf Müller-Dieckert a, Clemens Göhler a
a Institut für Physik, Technische Universität Chemnitz, Reichenhainer Straße, 70, Chemnitz, Germany
Materials for Sustainable Development Conference (MATSUS)
Proceedings of nanoGe Spring Meeting 2022 (NSM22)
#OrgCD22. Charge Dynamics of State-of-the-art Organic Solar Cells
Online, Spain, 2022 March 7th - 11th
Organizers: Ardalan Armin and Safa Shoaee
Invited Speaker, Carsten Deibel, presentation 076
DOI: https://doi.org/10.29363/nanoge.nsm.2022.076
Publication date: 7th February 2022

With the advent of non-fullerene acceptors, organic solar cells have made impressive improvements in terms of power conversion efficiency, so that breaking the 20 % limit is within close reach. Understanding the efficiency-limiting processes remains important to optimize the solar cells effectively.

The impact of the most important loss mechanisms for state-of-the-art organic solar cells is schematically shown in the Figure. We will present our recent findings on two of them, nongeminate recombination of charge carriers, and a loss in fill factor due to the transport resistance. 

Nongeminate recombination takes place via charge transfer complexes, and we discuss different models for describing them, in particular their absorption and emission, and how they relate to the open circuit voltage. Concerning the transport resistance, it is a major loss mechanism in non-fullerene based solar cells. We will discuss our findings on how the related voltage drop is related to the active layer conductivity.

© FUNDACIO DE LA COMUNITAT VALENCIANA SCITO
We use our own and third party cookies for analysing and measuring usage of our website to improve our services. If you continue browsing, we consider accepting its use. You can check our Cookies Policy in which you will also find how to configure your web browser for the use of cookies. More info